
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/400155/publications.pdf Version: 2024-02-01

DENCEELL

#	Article	IF	CITATIONS
1	Zinc application after low temperature stress promoted rice tillers recovery: Aspects of nutrient absorption and plant hormone regulation. Plant Science, 2022, 314, 111104.	1.7	13
2	Organocatalytic Enantioselective Construction of Axially Chiral Tetrasubstituted Allenes via 1,6â€Addition of Alkynyl Indole Imine Methides with 2â€Substituted Indoles. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	10
3	Chiral phosphoric acid-catalyzed regio- and enantioselective reactions of functionalized propargylic alcohols. Organic Chemistry Frontiers, 2022, 9, 1234-1240.	2.3	21
4	Motif-dependent immune co-receptor interactome profiling by photoaffinity chemical proteomics. Cell Chemical Biology, 2022, 29, 1024-1036.e5.	2.5	8
5	Organocatalytic Regio- and Enantioselective [3 + 2]-Annulations of Ninhydrin-Derived Morita–Baylis–Hillman Carbonates with 3-Methyleneoxindoles. Journal of Organic Chemistry, 2022, 87, 3184-3194.	1.7	14
6	Evaluation of Tunnel Face Stability Subjected to Seismic Load Based on the Non-associated Flow Rule. KSCE Journal of Civil Engineering, 2022, 26, 2478-2489.	0.9	11
7	Stochastic Optimization of the CPL-Function-Based Model for RF Power Transistors. IEEE Microwave and Wireless Components Letters, 2022, 32, 867-870.	2.0	1
8	Recent Advances in Organocatalytic Enantioselective Synthesis of Axially Chiral Allenes. Advanced Synthesis and Catalysis, 2022, 364, 1212-1222.	2.1	34
9	The Influence of Non-synchronous Excavation of Twin Curved Shield Tunnels. KSCE Journal of Civil Engineering, 2022, 26, 2456-2467.	0.9	8
10	Nitrogen limits zincâ€mediated stimulation of tillering in rice by modifying phytohormone balance under lowâ€temperature stress. Food and Energy Security, 2022, 11, .	2.0	4
11	Organocatalytic Enantioselective Formal (4 + 2)-Cycloadditions of Phosphine-Containing Dipoles with Isocyanates. Organic Letters, 2022, 24, 3102-3106.	2.4	12
12	Organocatalytic Enantioselective 1,10-Addition of Alkynyl Indole Imine Methides with Thiazolones: An Access to Axially Chiral Tetrasubstituted Allenes. Organic Letters, 2022, 24, 4914-4918.	2.4	19
13	Development and assessment of a water pressure reduction system for lining invert of underwater tunnels. Marine Georesources and Geotechnology, 2021, 39, 365-371.	1.2	12
14	Catalytic Enantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement of Indoles. Angewandte Chemie - International Edition, 2021, 60, 5871-5875.	7.2	39
15	Catalytic Enantioselective Synthesis of Spirooxindoles by Oxidative Rearrangement of Indoles. Angewandte Chemie, 2021, 133, 5935-5939.	1.6	9
16	Organocatalytic stereoselective 1,6-addition of thiolacetic acids to alkynyl indole imine methides: access to axially chiral sulfur-containing tetrasubstituted allenes. Organic Chemistry Frontiers, 2021, 8, 3469-3474.	2.3	27
17	Organocatalytic enantioselective [2 + 4]-annulation of Î ³ -substituted allenoates with <i>N</i> -acyldiazenes for the synthesis of optically active 1,3,4-oxadiazines. Organic and Biomolecular Chemistry, 2021, 19, 1727-1731.	1.5	11
18	Organocatalytic Enantioselective Azaâ€Michael Addition of Arylamines to 7â€Methideâ€7 <i>H</i> â€Indoles. Advanced Synthesis and Catalysis, 2021, 363, 2557-2561.	2.1	10

#	Article	IF	CITATIONS
19	A Framework for Automatic Burn Image Segmentation and Burn Depth Diagnosis Using Deep Learning. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-12.	0.7	9
20	Automatic Recognition and Classification System of Thyroid Nodules in CT Images Based on CNN. Computational Intelligence and Neuroscience, 2021, 2021, 1-11.	1.1	14
21	Sensorless Control Strategy of a Permanent Magnet Synchronous Motor Based on an Improved Sliding Mode Observer. World Electric Vehicle Journal, 2021, 12, 74.	1.6	8
22	Organocatalytic Enantioselective Construction of Acyclic <i>N</i> , <i>N</i> â€Acetals via Azaâ€Addition of Arylamines to Ketimines. Advanced Synthesis and Catalysis, 2021, 363, 4332-4337.	2.1	6
23	Collapse development characteristics of a vertical loess slope and its influence on adjacent tunnels. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	2
24	Organocatalytic regio-, diastereo- and enantioselective γ-additions of isoxazol-5(4 <i>H</i>)-ones to β,γ-alkynyl-α-imino esters for the synthesis of axially chiral tetrasubstituted α-amino allenoates. Organic Chemistry Frontiers, 2021, 8, 1243-1248.	2.3	32
25	Organocatalytic Regio―and Enantioselective Nâ€Alkylation of Isoxazolâ€5â€ones. European Journal of Organic Chemistry, 2021, 2021, 6777.	1.2	3
26	Semi-analytical solutions of ultimate load for a rectangular concrete-filled tubular column subjected to eccentric compression. European Journal of Environmental and Civil Engineering, 2020, 24, 1664-1691.	1.0	1
27	The characteristics of musselâ€inspired nHA/OSA injectable hydrogel and repaired bone defect in rabbit. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1814-1825.	1.6	34
28	Organocatalytic site- and stereoselective 1,6-additions of <i>N</i> -aryl-3-oxobutanamides to propargylic aza- <i>p</i> -quinone methides. Organic Chemistry Frontiers, 2020, 7, 3446-3451.	2.3	25
29	Hybrid Model Structure for Diabetic Retinopathy Classification. Journal of Healthcare Engineering, 2020, 2020, 1-9.	1.1	28
30	Non-hydrogen bond catalyst-mediated diastereoselective conjugate additions of 5 <i>H</i> -oxazol-4-ones to <i>o</i> -hydroxyphenyl-substituted <i>p</i> -quinone methides. Organic and Biomolecular Chemistry, 2020, 18, 6807-6811.	1.5	4
31	Detection of Snore from OSAHS Patients Based on Deep Learning. Journal of Healthcare Engineering, 2020, 2020, 1-10.	1.1	17
32	High-Throughput and Integrated Chemical Proteomic Approach for Profiling Phosphotyrosine Signaling Complexes. Analytical Chemistry, 2020, 92, 8933-8942.	3.2	10
33	Enantioselective Construction of Vicinal Sulfurâ€functionalized Quaternary and Tertiary Stereocenters via Organocatalytic Michael Addition of 5 <i>H</i> â€Thiazolâ€4â€ones to 1â€Azadienes. Asian Journal of Organic Chemistry, 2020, 9, 1183-1186.	1.3	11
34	Organocatalytic Enantioselective αâ€Amination by Conjugate Addition of 5 H â€Thiazolâ€4â€ones to Arylazocarboxylates: Access to Chiral N , S â€acetals. Asian Journal of Organic Chemistry, 2020, 9, 1187-1191.	1.3	3
35	Recent Advances in Catalytic Asymmetric Reactions of Thiazolones, Rhodanines and Their Derivatives. Advanced Synthesis and Catalysis, 2020, 362, 3542-3557.	2.1	11
36	Tricolor dual sensor for ratiometrically analyzing potassium ions and dissolved oxygen. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 232, 118155.	2.0	11

#	Article	lF	CITATIONS
37	Organocatalytic Enantioselective Regiodivergent Câ^'H Bond Functionalization of 1â€Naphthols with 1â€Azadienes. Advanced Synthesis and Catalysis, 2020, 362, 1286-1291.	2.1	24
38	A Prefabricated Underground Cylindrical Garage and a Corresponding Stiffness Analysis. International Journal of Steel Structures, 2020, 20, 954-968.	0.6	3
39	Organocatalytic Regio- and Enantioselective 1,8-Additions of Nitrogen and Sulfur Nucleophiles to 6-Methylene-6 <i>H</i> -indoles. Organic Letters, 2020, 22, 7859-7863.	2.4	23
40	Organocatalytic Regioselective [3+2] Annulation of Morita-Baylis-Hillman Carbonates with Azonaphthalenes: An Efficient Access to 3-Spiropyrazole- 2-oxindoles. Current Organocatalysis, 2020, 7, 134-139.	0.3	2
41	Phosphineâ€Catalyzed Enantioselective [1+4] Annulation of Moritaâ€Baylisâ€Hillman Carbonates with α,βâ€Unsaturated Imines. Asian Journal of Organic Chemistry, 2019, 8, 242-245.	1.3	21
42	Organocatalytic enantioselective conjugate addition of 2-naphthols to <i>ortho</i> -hydroxyphenyl substituted <i>para</i> -quinone methides: access to unsymmetrical triarylmethanes. RSC Advances, 2019, 9, 24212-24217.	1.7	32
43	Experimental and simulation studies of strontium/fluoride-codoped hydroxyapatite nanoparticles with osteogenic and antibacterial activities. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110359.	2.5	43
44	Enamine Catalytic Annulation of Azonaphthalenes: An Access to Indole Derivatives. Organic Letters, 2019, 21, 6557-6561.	2.4	13
45	Enantioselective construction of 3-substituted 3-amino-2-oxindoles containing an <i>N</i> , <i>N</i> -ketal skeleton <i>via</i> organocatalyzed aza-addition of isatin imines. Organic and Biomolecular Chemistry, 2019, 17, 8374-8378.	1.5	9
46	Organocatalytic Remote Stereocontrolled 1,8-Additions of Thiazolones to Propargylic Aza- <i>p</i> -quinone Methides. Organic Letters, 2019, 21, 7415-7419.	2.4	52
47	Organocatalytic Enantioselective Michael Addition of Oxazolones to 2â€Enoylpyridine N â€Oxides for Assembling of Pyridine N â€Oxides Featuring Vicinal Oxygenâ€Containing Tetrasubstituted Stereocenters. Advanced Synthesis and Catalysis, 2019, 361, 4208-4214.	2.1	5
48	Organocatalytic enantioselective direct vinylogous Michael addition of γ-substituted deconjugate butenolides to azadienes. Organic Chemistry Frontiers, 2019, 6, 2452-2456.	2.3	28
49	A Musselâ€Inspired Persistent ROSâ€Scavenging, Electroactive, and Osteoinductive Scaffold Based on Electrochemicalâ€Driven In Situ Nanoassembly. Small, 2019, 15, e1805440.	5.2	95
50	High-altitude and long-range transport of aerosols causing regional severe haze during extreme dust storms explains why afforestation does not prevent storms. Environmental Chemistry Letters, 2019, 17, 1333-1340.	8.3	18
51	Associations of PIK3CA mutations with clinical features and prognosis in gastric cancer. Future Oncology, 2019, 15, 1873-1894.	1.1	7
52	A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomaterialia, 2019, 88, 503-513.	4.1	143
53	Asymmetric synthesis of atropisomeric pyrazole <i>via</i> an enantioselective reaction of azonaphthalene with pyrazolone. Chemical Communications, 2019, 55, 12715-12718.	2.2	36
54	Asymmetric One-Pot Construction of Three Stereogenic Elements: Chiral Carbon Center, Stereoisomeric Alkenes, and Chirality of Axial Styrenes. Organic Letters, 2019, 21, 95-99.	2.4	79

#	Article	IF	CITATIONS
55	Enantioselective Construction of Pyridine <i>N</i> -Oxides Featuring 2,3-Dihydrofuran Motifs via Phosphine-Catalyzed [4 + 1]-Annulation of 2-Enoylpyridine <i>N</i> -Oxides with Morita–Baylis–Hillman Carbonates. Organic Letters, 2019, 21, 152-155.	2.4	41
56	Organocatalytic Asymmetric Michael Addition of Rhodanines to Azadienes for Assembling of Sulfurâ€containing Tetrasubstituted Carbon Stereocenters. Advanced Synthesis and Catalysis, 2019, 361, 476-480.	2.1	33
57	Remote Stereocontrolled Construction of Vicinal Axially Chiral Tetrasubstituted Allenes and Heteroatom-Functionalized Quaternary Carbon Stereocenters. Organic Letters, 2019, 21, 503-507.	2.4	80
58	Congmujingnosides B-G, triterpene saponins from the stem of <i>Aralia chinensis</i> and their protective effects against H ₂ O ₂ -induced myocardial cell injury. Natural Product Research, 2019, 33, 500-505.	1.0	9
59	Mussel-Inspired Electroactive and Antioxidative Scaffolds with Incorporation of Polydopamine-Reduced Graphene Oxide for Enhancing Skin Wound Healing. ACS Applied Materials & Interfaces, 2019, 11, 7703-7714.	4.0	172
60	Spatial and temporal distributions of air pollutant emissions from open crop straw and biomass burnings in China from 2002 to 2016. Environmental Chemistry Letters, 2018, 16, 301-309.	8.3	74
61	Recent Advances in the Catalytic Enantioselective Reactions of <i>para</i> â€Quinone Methides. Chemistry - an Asian Journal, 2018, 13, 2350-2359.	1.7	157
62	NHCâ€Catalyzed Enantioselective [4+3] Cycloaddition of <i>Ortho</i> â€Hydroxyphenyl Substituted <i>Para</i> â€Quinone Methides with Isatinâ€Derived Enals. Advanced Synthesis and Catalysis, 2018, 360, 2460-2464.	2.1	105
63	Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China. Scientific Reports, 2018, 8, 934.	1.6	35
64	Enantioselective Organocatalytic 1,6-Addition of Azlactones to <i>para</i> -Quinone Methides: An Access to α,α-Disubstituted and β,β-Diaryl-α-amino acid Esters. Organic Letters, 2018, 20, 1142-1145.	2.4	91
65	Cucurbitane-type triterpenes from the tubers of Hemsleya penxianensis and their bioactive activity. Phytochemistry, 2018, 147, 49-56.	1.4	15
66	Direct access to spirobiisoxazoline <i>via</i> the double 1,3-dipolar cycloaddition of nitrile oxide with allenoate. Organic and Biomolecular Chemistry, 2018, 16, 895-898.	1.5	23
67	Defect engineering of highly stable lanthanide metal–organic frameworks by particle modulation for coating catalysis. Journal of Materials Chemistry A, 2018, 6, 342-348.	5.2	39
68	Phosphine-mediated enantioselective [1 + 4]-annulation of Morita–Baylis–Hillman carbonates with 2-enoylpyridines. RSC Advances, 2018, 8, 41620-41623.	1.7	13
69	A resilient and flexible chitosan/silk cryogel incorporated Ag/Sr co-doped nanoscale hydroxyapatite for osteoinductivity and antibacterial properties. Journal of Materials Chemistry B, 2018, 6, 7427-7438.	2.9	56
70	Regioselective [3 + 2]-annulation of hydrazonyl chlorides with 1,3-dicarbonyl compounds for assembling of polysubstituted pyrazoles. Organic and Biomolecular Chemistry, 2018, 16, 7811-7814.	1.5	11
71	Organocatalytic enantioselective Mannich-type addition of 5 <i>H</i> -thiazol-4-ones to isatin-derived imines: access to 3-substituted 3-amino-2-oxindoles featured by vicinal sulfur-containing tetrasubstituted stereocenters. Organic Chemistry Frontiers, 2018, 5, 3226-3230.	2.3	28
72	Photoaffinity-engineered protein scaffold for systematically exploring native phosphotyrosine signaling complexes in tumor samples. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8863-E8872.	3.3	19

#	Article	IF	CITATIONS
73	Mitigation of severe urban haze pollution by a precision air pollution control approach. Scientific Reports, 2018, 8, 8151.	1.6	15
74	Enantioselective Construction of Vicinal Sulfurâ€containing Tetrasubstituted Stereocenters via Organocatalyzed Mannichâ€Type Addition of Rhodanines to Isatin Imines. Advanced Synthesis and Catalysis, 2018, 360, 3266-3270.	2.1	28
75	Catalyst-Controlled Diastereodivergent Construction of Vicinal Sulfur-Functionalized Quaternary and Tertiary Stereocenters. Organic Letters, 2018, 20, 4970-4974.	2.4	52
76	Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 28015-28026.	4.0	227
77	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	2.7	43
78	Phosphine-mediated enantioselective [4 + 1] annulations between <i>ortho</i> -quinone methides and Morita–Baylis–Hillman carbonates. Organic Chemistry Frontiers, 2018, 5, 2728-2733.	2.3	42
79	Catalyst-Free Phospha-Nucleophilic Substitution of Hydroxylactams by Diarylphosphine Oxide. Current Organocatalysis, 2018, 5, 145-149.	0.3	2
80	New cucurbitane triterpenoids with cytotoxic activities from Hemsleya penxianensis. Fìtoterapìâ, 2017, 120, 158-163.	1.1	15
81	Organocatalytic regioselective, diastereoselective, and enantioselective annulation of cyclic 1-azadienes with Î ³ -nitro ketones via 3,4-cyclization. Organic Chemistry Frontiers, 2017, 4, 1336-1340.	2.3	25
82	Electroresponsive and cell-affinitive polydopamine/polypyrrole composite microcapsules with a dual-function of on-demand drug delivery and cell stimulation for electrical therapy. NPG Asia Materials, 2017, 9, e358-e358.	3.8	75
83	Asymmetric synthesis of dihydrocoumarins via the organocatalytic hetero-Diels–Alder reaction of ortho-quinone methides. Organic and Biomolecular Chemistry, 2017, 15, 8743-8747.	1.5	85
84	Organocatalytic Enantioselective [1 + 4] Annulation of Morita–Baylis–Hillman Carbonates with Electron-Deficient Olefins: Access to Chiral 2,3-Dihydrofuran Derivatives. Organic Letters, 2017, 19, 4774-4777.	2.4	59
85	New alkaloids with unusual spermidine moieties from the seeds of Orychophragmus violaceus and their cytoprotective properties. RSC Advances, 2017, 7, 41495-41498.	1.7	9
86	Organocatalytic condensation–ring opening–annulation cascade reactions between N-Bocindolin-2-ones/benzofuran-2(3H)-ones and salicylaldehydes for synthesis of 3-arylcoumarins. Organic and Biomolecular Chemistry, 2017, 15, 7505-7508.	1.5	5
87	Porous titanium scaffolds with selfâ€assembled micro/nanoâ€hierarchical structure for dual functions of bone regeneration and antiâ€nfection. Journal of Biomedical Materials Research - Part A, 2017, 105, 3482-3492.	2.1	37
88	Asymmetric synthesis of chromene skeletons via organocatalytic domino reactions of in situ generated ortho-quinone methide with malononitrile and β-functionalized ketone. RSC Advances, 2017, 7, 39216-39220.	1.7	76
89	A Catalystâ€Free Cycloaddition Reaction: Access to Spiro[chromanâ€3,2'â€indeneâ€1',3'â€dione] S ChemistrySelect, 2017, 2, 11380-11383.	icaffolds.	13
90	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 16313-16317.	7.2	290

#	Article	IF	CITATIONS
91	Threeâ€Dimensional Anionic Cyclodextrinâ€Based Covalent Organic Frameworks. Angewandte Chemie, 2017, 129, 16531-16535.	1.6	54
92	High reduction of ozone and particulate matter during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic. Environmental Chemistry Letters, 2017, 15, 709-715.	8.3	27
93	Organocatalytic Asymmetric Benzylation and Aldolâ€Hemiacetalization of α,βâ€Unsaturated Trifluoromethyl Ketones: Efficient Enantioselective Construction of 3,4â€Dihydroisocoumarins. Chemistry - A European Journal, 2017, 23, 519-523.	1.7	35
94	An improved model for substrate in RF SOI MOSFET varactor. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 2017, 30, e2179.	1.2	1
95	Automatical encoding of button products based on visual recognition. , 2017, , .		0
96	Association of sirtuins with clinicopathological parameters and overall survival in gastric cancer. Oncotarget, 2017, 8, 74359-74370.	0.8	21
97	Autocatalytic Nucleophilic Substitution of Hydroxylactam by Thiophenol: Access to N(acyl), S-acetals. Current Green Chemistry, 2017, 3, 235-241.	0.7	1
98	Purification and characterization of a novel and versatile α-amylase from thermophilic <i>Anoxybacillus</i> sp. YIM 342. Starch/Staerke, 2016, 68, 446-453.	1.1	17
99	Substrateâ€Controlled Synthesis of Functionalized Cyclohexanes with Four Stereocenters by Organocatalytic Asymmetric Domino Reactions Between γâ€Nitro Ketone and Enone. European Journal of Organic Chemistry, 2016, 2016, 535-540.	1.2	21
100	Organocatalytic 1,3â€Dipolar CycloÂaddition Reaction of βâ€Keto Amides with Azides – Direct Access to 1,4,5â€Trisubstituted 1,2,3â€Triazoleâ€4â€carbÂoxamides. European Journal of Organic Chemistry, 2016, 2016, 1886-1890.	1.2	32
101	Novel Fluorescence Arginine Analogue as a Sensor for Direct Identification and Imaging of Nitric Oxide Synthase-like Enzymes in Plants. Scientific Reports, 2016, 6, 32630.	1.6	6
102	Enolate-mediated 1,3-dipolar cycloaddition reaction of β-functionalized ketones with nitrile oxides: direct access to 3,4,5-trisubstituted isoxazoles. Organic and Biomolecular Chemistry, 2016, 14, 5246-5250.	1.5	33
103	Access to Indole Derivatives from Diaryliodonium Salts and 2-Alkynylanilines. Journal of Organic Chemistry, 2016, 81, 3994-4001.	1.7	28
104	Synthesis of spiro[indane-1,3-dione-1-pyrrolines] via copper-catalyzed heteroannulation of ketoxime acetates with 2-arylideneindane-1,3-diones. Organic Chemistry Frontiers, 2016, 3, 1614-1618.	2.3	21
105	Enolate-mediated 1,3-dipolar cycloaddition reactions of allyl ketones with nitrile oxides: direct access to 3,5-disubstituted isoxazolines. Organic and Biomolecular Chemistry, 2016, 14, 9985-9988.	1.5	9
106	Performance of a multi-face tunnel excavated in loess ground based on field monitoring and numerical modeling. Arabian Journal of Geosciences, 2016, 9, 1.	0.6	30
107	Cassane diterpenes with oxygen bridge from the seeds of Caesalpinia sappan. Fìtoterapìâ, 2016, 112, 205-210.	1.1	19
108	Synthesis of Dinitrogenâ€Fused Spirocyclic Heterocycles via Organocatalytic 1,3â€dipolar Cycloaddition of 2â€Arylideneâ€1,3â€indandiones and an Azomethine Imine. Asian Journal of Organic Chemistry, 2016, 5, 477-480.	1.3	20

#	Article	IF	CITATIONS
109	Anthropogenic aerosols are a potential cause for migration of the summer monsoon rain belt in China. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2209-10.	3.3	29
110	DBU-Catalyzed One-Pot Multicomponent Reaction for the Synthesis of Spirocyclic Tetrahydrothiophene Derivatives. Current Organocatalysis, 2016, 3, 216-220.	0.3	8
111	Tandem Cyclization Reaction between Optically ActiveÎ ³ -Nitro Ketone and Chalcone towards the Synthesis of Chiral Cyclohexane Skeletons Bearing Five Stereocenters. Chinese Journal of Organic Chemistry, 2016, 36, 1572.	0.6	5
112	Enantioselective Synthesis of Spiro[1,3â€Âindanedione–tetrahydrothiophene]s by ÂOrganocatalytic Sulfaâ€Michael/Michael Domino Reaction. European Journal of Organic Chemistry, 2015, 2015, 6130-6134.	1.2	34
113	A highly enantioselective Michael reaction between α,β-unsaturated ketones and malonic acid half-thioesters. New Journal of Chemistry, 2015, 39, 5100-5103.	1.4	21
114	Levels and patterns of polychlorinated biphenyls in residues from incineration of established source-classified MSW in China. Toxicological and Environmental Chemistry, 2015, 97, 1337-1349.	0.6	10
115	Organocatalytic enantioselective Friedel–Crafts reaction: an efficient access to chiral isoindolo-β-carboline derivatives. Organic and Biomolecular Chemistry, 2015, 13, 4395-4398.	1.5	41
116	Discovery of biphenyl-based VEGFR-2 inhibitors. Part 3: Design, synthesis and 3D-QSAR studies. Bioorganic and Medicinal Chemistry, 2015, 23, 1044-1054.	1.4	19
117	Enantioselective construction of spiro-1,3-indandiones with three stereocenters via organocatalytic Michael-aldol reaction of 2-arylideneindane-1,3-diones and nitro aldehydes. Organic Chemistry Frontiers, 2015, 2, 1048-1052.	2.3	29
118	Antimalarial and Antiproliferative Cassane Diterpenes of <i>Caesalpinia sappan</i> . Journal of Natural Products, 2015, 78, 2364-2371.	1.5	49
119	Inorganicâ€Baseâ€Catalysed Synthesis of α,βâ€Unsaturated Ketones and 3,5â€Disubstituted Cyclohexâ€2â€e Asian Journal of Organic Chemistry, 2014, 3, 644-648.	nâ€lậ€on L	es. ₁₃
120	New simple primary amine–thiourea organocatalysts and their application in asymmetric conjugate addition. Tetrahedron Letters, 2014, 55, 3697-3700.	0.7	19
121	Amineâ€Catalyzed Enantioselective 1,3â€Dipolar Cycloadditions of Aldehydes to C,Nâ€Cyclic Azomethine Imines. Chemistry - A European Journal, 2014, 20, 4559-4562.	1.7	46
122	Recent progress on asymmetric organocatalytic construction of chiral cyclohexenone skeletons. Organic and Biomolecular Chemistry, 2014, 12, 2499-2513.	1.5	49
123	Asymmetric Synthesis of Tetrahydroquinolines through a [3+2] Cycloaddition Controlled by Dienamine Catalysis. Chemistry - A European Journal, 2014, 20, 6592-6596.	1.7	55
124	Organocatalytic asymmetric aza-Michael addition of pyrazole to chalcone. Tetrahedron: Asymmetry, 2014, 25, 98-101.	1.8	36
125	Phaseâ€Transferâ€Catalystâ€Mediated Domino Reaction of γâ€Nitro Ketones with Chalcones: Approach to Functionalized Sixâ€Memberedâ€Ring Carbocycles. European Journal of Organic Chemistry, 2014, 2014, 7499-7504.	1.2	10
126	Asymmetric organocatalysis mediated by primary amines derived from cinchona alkaloids: recent advances. Catalysis Science and Technology, 2014, 4, 311-320.	2.1	98

#	Article	IF	CITATIONS
127	Copper-Catalyzed One-Pot Synthesis of Unsymmetrical Arylurea Derivatives via Tandem Reaction of Diaryliodonium Salts with N-Arylcyanamide. Journal of Organic Chemistry, 2014, 79, 8156-8162.	1.7	35
128	Pontibacter diazotrophicus sp. nov., a Novel Nitrogen-Fixing Bacterium of the Family Cytophagaceae. PLoS ONE, 2014, 9, e92294.	1.1	55
129	Direct access to triazole-olefins through catalytic cycloaddition of azides to unsaturated aldehydes. Chemical Communications, 2013, 49, 10187.	2.2	99
130	Purification and properties of a SDS-resistant xylanase from halophilic Streptomonospora sp. YIM 90494. Cellulose, 2013, 20, 1947-1955.	2.4	10
131	Organocatalytic conjugate addition promoted by multi-hydrogen-bond cooperation: access to chiral 2-amino-3-nitrile-chromenes. Organic and Biomolecular Chemistry, 2013, 11, 400-406.	1.5	17
132	An Efficient Oxidative Cross-Coupling Reaction between C-H and N-H Bonds; A Transition-Metal-Free Protocol at Room Temperature. Synlett, 2013, 24, 2009-2013.	1.0	18
133	Catalyst-Free Efficient Aza-Michael Addition of Azoles to Nitroalkenes. Synlett, 2012, 23, 788-790.	1.0	16
134	Highly Efficient Assembly of 3-Hydroxy Oxindole Scaffold via a Catalytic Decarboxylative [1,2]-Addition Strategy. ACS Catalysis, 2012, 2, 2622-2625.	5.5	38
135	Enantioselective Organocatalytic Conjugate Addition of Nitroalkanes to Electrophilic 2-Iminochromenes. ACS Catalysis, 2012, 2, 1535-1538.	5.5	40
136	Advances and Applications in Organocatalytic Asymmetric azaâ€Michael Addition. ChemCatChem, 2012, 4, 917-925.	1.8	148
137	Catalyst-free aza-Michael addition of azole to β,γ-unsaturated-α-keto ester: an efficient access to C–N bond formation. Tetrahedron Letters, 2012, 53, 2887-2889.	0.7	35
138	Organocatalytic asymmetric Michael-type reaction between β,γ-unsaturated α-keto ester and α-nitro ketone. Organic and Biomolecular Chemistry, 2011, 9, 7997.	1.5	49
139	Catalytic asymmetric Michael addition of α,β-unsaturated aldehydes to Ni(<scp>ii</scp>) complexes of the Schiff base of glycine. Organic and Biomolecular Chemistry, 2011, 9, 793-801.	1.5	7
140	Organocatalytic Asymmetric Aldol Reaction of Ketones with β,γâ€Unsaturated αâ€Keto Esters: An Efficient Access to Chiral Tertiary Alcohol Skeletons. Advanced Synthesis and Catalysis, 2011, 353, 1179-1184.	2.1	35
141	Enantioselective organocatalytic phospha-Michael reaction of $\hat{I}\pm,\hat{I}^2$ -unsaturated ketones. Chemical Communications, 2010, 46, 4806.	2.2	88
142	Highly Enantioselective and Efficient Organocatalytic Aldol Reaction of Acetone and β,γ-Unsaturated α-Keto Ester. Organic Letters, 2010, 12, 5616-5619.	2.4	67
143	Asymmetric vinylogous Michael reaction of α,β-unsaturated ketones with γ-butenolide under multifunctional catalysis. Chemical Communications, 2010, 46, 5957.	2.2	71
144	Enantioselective Michael Reaction of α-Alkyl-β-keto Esters and Enones under Multifunctional Catalysis. Organic Letters, 2010, 12, 5218-5221.	2.4	39

#	Article	IF	CITATIONS
145	Asymmetric organocatalytic Michael addition of anthrone to enone. Organic and Biomolecular Chemistry, 2010, 8, 3244.	1.5	22
146	Positive ESD robustness of a novel anti-ESD TGFPTD SOI LDMOS. , 2010, , .		1
147	Enantioselective Organocatalytic Michael Addition of Malonates to α,β-Unsaturated Ketones. Organic Letters, 2009, 11, 753-756.	2.4	102
148	Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World Journal of Microbiology and Biotechnology, 2008, 24, 2243-2248.	1.7	33
149	Base–Base Bifunctional Catalysis: A Practical Strategy for Asymmetric Michael Addition of Malonates to α,βâ€Unsaturated Aldehydes. Advanced Synthesis and Catalysis, 2008, 350, 1383-1389.	2.1	55
150	An efficient enantioselective method for asymmetric Michael addition of nitroalkanes to α,β-unsaturated aldehydes. Chemical Communications, 2008, , 1232.	2.2	109
151	xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math	/mml:mi>< 1.0	/mml:mrov/ 17
152	Asymmetric multifunctional organocatalytic Michael addition of nitroalkanes to α,β-unsaturated ketones. Chemical Communications, 2008, , 3302.	2.2	126
153	Liquid Phase Benzoylation of Naphthalene over Hβ Zeolite for Synthesizing 2-Benzoylnaphthalene. Petroleum Science and Technology, 2008, 26, 1088-1098.	0.7	2
154	Effect of aromatic ring in the alkyl chain on surface properties of arylalkyl surfactant solutions. Journal of Surfactants and Detergents, 2006, 9, 245-248.	1.0	26