Paolo Bombelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/400110/publications.pdf

Version: 2024-02-01

32 papers 2,992 citations

257450 24 h-index 395702 33 g-index

35 all docs

35 does citations

35 times ranked 3915 citing authors

#	Article	lF	CITATIONS
1	A dual compartment cuvette system for correcting scattering in whole-cell absorbance spectroscopy of photosynthetic microorganisms. Photosynthesis Research, 2022, 151, 61-69.	2.9	2
2	Powering a microprocessor by photosynthesis. Energy and Environmental Science, 2022, 15, 2529-2536.	30.8	36
3	Synthetic biology and bioelectrochemical tools for electrogenetic system engineering. Science Advances, 2022, 8, eabm5091.	10.3	17
4	Electricity Production by Photosynthetic Microorganisms. Joule, 2020, 4, 2065-2069.	24.0	20
5	Tinted Semiâ€Transparent Solar Panels Allow Concurrent Production of Crops and Electricity on the Same Cropland. Advanced Energy Materials, 2020, 10, 2001189.	19.5	61
6	The Development of Biophotovoltaic Systems for Power Generation and Biological Analysis. ChemElectroChem, 2019, 6, 5375-5386.	3.4	70
7	Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nature Energy, 2018, 3, 75-81.	39.5	103
8	Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nature Communications, 2018, 9, 1299.	12.8	70
9	Photoelectrochemistry of Photosystem II <i>in Vitro</i> vs <i>in Vivo</i> . Journal of the American Chemical Society, 2018, 140, 6-9.	13.7	98
10	Biophotovoltaics: Design and Study of Bioelectrochemical Systems for Biotechnological Applications and Metabolic Investigation. Methods in Molecular Biology, 2018, 1770, 335-346.	0.9	8
11	Electrochemical Characterisation of Bio-Bottle-Voltaic (BBV) Systems Operated with Algae and Built with Recycled Materials. Biology, 2018, 7, 26.	2.8	15
12	Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Current Biology, 2017, 27, R292-R293.	3.9	335
13	Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells. Journal of Materials Chemistry A, 2017, 5, 23872-23886.	10.3	45
14	Response to Weber et al Current Biology, 2017, 27, R745.	3.9	16
15	Electricity generation from digitally printed cyanobacteria. Nature Communications, 2017, 8, 1327.	12.8	112
16	Electrical output of bryophyte microbial fuel cell systems is sufficient to power a radio or an environmental sensor. Royal Society Open Science, 2016, 3, 160249.	2.4	39
17	Hydrocarbons Are Essential for Optimal Cell Size, Division, and Growth of Cyanobacteria. Plant Physiology, 2016, 172, 1928-1940.	4.8	53
18	Exploiting algal NADPH oxidase for biophotovoltaic energy. Plant Biotechnology Journal, 2016, 14, 22-28.	8.3	37

#	Article	IF	CITATIONS
19	Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 247-255.	1.0	192
20	A High Powerâ€Density, Mediatorâ€Free, Microfluidic Biophotovoltaic Device for Cyanobacterial Cells. Advanced Energy Materials, 2015, 5, 1-6.	19.5	531
21	Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy and Environmental Science, 2015, 8, 1092-1109.	30.8	232
22	Enhancing plasma membrane NADPH oxidase activity increases current output by diatoms in biophotovoltaic devices. Algal Research, 2015, 12, 91-98.	4.6	25
23	Phycobilisome-Deficient Strains of <i>Synechocystis</i> sp. PCC 6803 Have Reduced Size and Require Carbon-Limiting Conditions to Exhibit Enhanced Productivity Â. Plant Physiology, 2014, 165, 705-714.	4.8	66
24	Hydrogen production through oxygenic photosynthesis using the cyanobacterium Synechocystis sp. PCC 6803 in a bio-photoelectrolysis cell (BPE) system. Energy and Environmental Science, 2013, 6, 2682.	30.8	61
25	Comparison of power output by rice (Oryza sativa) and an associated weed (Echinochloa glabrescens) in vascular plant bio-photovoltaic (VP-BPV) systems. Applied Microbiology and Biotechnology, 2013, 97, 429-438.	3.6	52
26	Biological photovoltaics: intra- and extra-cellular electron transport by cyanobacteria. Biochemical Society Transactions, 2012, 40, 1302-1307.	3.4	91
27	Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system. Physical Chemistry Chemical Physics, 2012, 14, 12221.	2.8	93
28	Photosynthetic biofilms in pure culture harness solar energy in a mediatorless bio-photovoltaic cell (BPV) system. Energy and Environmental Science, 2011, 4, 4699.	30.8	227
29	Quantitative analysis of the factors limiting solar power transduction by Synechocystis sp. PCC 6803 in biological photovoltaic devices. Energy and Environmental Science, 2011, 4, 4690.	30.8	141
30	Porous ceramic anode materials for photo-microbial fuel cells. Journal of Materials Chemistry, 2011, 21, 18055.	6.7	75
31	Harnessing solar energy by bio-photovoltaic (BPV) devices. Communications in Agricultural and Applied Biological Sciences, 2011, 76, 89-91.	0.0	5
32	In Vivo Changes of the Oxidation-Reduction State of NADP and of the ATP/ADP Cellular Ratio Linked to the Photosynthetic Activity in Chlamydomonas reinhardtii Â. Plant Physiology, 2003, 132, 1464-1474.	4.8	55