
Luciano Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/40009/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computation of Eigenvalues for Nonlocal Models by Spectral Methods. Journal of Peridynamics and Nonlocal Modeling, 2023, 5, 133-154.	2.9	8
2	A space-time discretization of a nonlinear peridynamic model on a 2D lamina. Computers and Mathematics With Applications, 2022, 116, 161-175.	2.7	23
3	Numerical event location techniques in discontinuous differential algebraic equations. Applied Numerical Mathematics, 2022, 178, 98-122.	2.1	2
4	A nonperiodic Chebyshev spectral method avoiding penalization techniques for a class of nonlinear peridynamic models. International Journal for Numerical Methods in Engineering, 2022, 123, 4859-4876.	2.8	9
5	A spectral method with volume penalization for a nonlinear peridynamic model. International Journal for Numerical Methods in Engineering, 2021, 122, 707-725.	2.8	24
6	On Filippov solutions of discontinuous DAEs of index 1. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105656.	3.3	4
7	Numerical methods for the nonlocal wave equation of the peridynamics. Applied Numerical Mathematics, 2020, 155, 119-139.	2.1	29
8	A mixed MoL–TMoL for the numerical solution of the 2D Richards' equation in layered soils. Computers and Mathematics With Applications, 2020, 79, 1990-2001.	2.7	29
9	The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities. Advances in Water Resources, 2018, 115, 264-272.	3.8	30
10	Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 2911-2934.	0.9	1
11	Dynamical modeling of liver Aquaporin-9 expression and glycerol permeability in hepatic glucose metabolism. European Journal of Cell Biology, 2017, 96, 61-69.	3.6	21
12	Time-transformations for the event location in discontinuous ODEs. Mathematics of Computation, 2017, 87, 2321-2341.	2.1	7
13	Mimetic finite difference methods for Hamiltonian wave equations in 2D. Computers and Mathematics With Applications, 2017, 74, 1123-1141.	2.7	23
14	A new data assimilation technique based on ensemble Kalman filter and Brownian bridges: An application to Richards' equation. Computer Physics Communications, 2016, 208, 43-53.	7.5	22
15	Spectral properties and conservation laws in Mimetic Finite Difference methods for PDEs. Journal of Computational and Applied Mathematics, 2016, 292, 760-784.	2.0	20
16	A model for the hepatic glucose metabolism based on Hill and step functions. Journal of Computational and Applied Mathematics, 2016, 292, 746-759.	2.0	8
17	One-sided direct event location techniques in the numerical solution of discontinuous differential systems. BIT Numerical Mathematics, 2015, 55, 987-1003.	2.0	10
18	Direct event location techniques based on Adams multistep methods for discontinuous ODEs. Applied Mathematics Letters, 2015, 49, 152-158.	2.7	6

#	Article	IF	CITATIONS
19	Uniqueness of Filippov Sliding Vector Field on the Intersection of Two Surfaces in \$\$mathbb {R}^3\$\$ R 3 and Implications for Stability of Periodic Orbits. Journal of Nonlinear Science, 2015, 25, 1453-1471.	2.1	6
20	Sharp sufficient attractivity conditions for sliding on a co-dimension 2 discontinuity surface. Mathematics and Computers in Simulation, 2015, 110, 3-14.	4.4	8
21	On the Equivalence between the Sigmoidal Approach and Utkin's Approach for Piecewise-Linear Models of Gene Regulatory Networks. SIAM Journal on Applied Dynamical Systems, 2014, 13, 1270-1292.	1.6	15
22	Numerical solution of discontinuous differential systems: Approaching the discontinuity surface from one side. Applied Numerical Mathematics, 2013, 67, 98-110.	2.1	18
23	A Filippov sliding vector field on an attracting co-dimension 2 discontinuity surface, and a limited loss-of-attractivity analysis. Journal of Differential Equations, 2013, 254, 1800-1832.	2.2	42
24	A survey of numerical methods for IVPs of ODEs with discontinuous right-hand side. Journal of Computational and Applied Mathematics, 2012, 236, 3967-3991.	2.0	74
25	On the continuous extension of Adams–Bashforth methods and the event location in discontinuous ODEs. Applied Mathematics Letters, 2012, 25, 995-999.	2.7	22
26	Sliding motion on discontinuity surfaces of high co-dimension. A construction for selecting a Filippov vector field. Numerische Mathematik, 2011, 117, 779-811.	1.9	50
27	Fundamental matrix solutions of piecewise smooth differential systems. Mathematics and Computers in Simulation, 2011, 81, 932-953.	4.4	26
28	Sliding Motion in Filippov Differential Systems: Theoretical Results and a Computational Approach. SIAM Journal on Numerical Analysis, 2009, 47, 2023-2051.	2.3	81
29	On Filippov and Utkin Sliding Solution of Discontinuous Systems. , 2009, , .		0
30	Computation of functions of Hamiltonian and skew-symmetric matrices. Mathematics and Computers in Simulation, 2008, 79, 1284-1297.	4.4	13
31	Numerical methods for ordinary differential equations on matrix manifolds. Journal of Computational and Applied Mathematics, 2007, 210, 232-243.	2.0	2
32	Analysis of Projection Methods for Rational Function Approximation to the Matrix Exponential. SIAM Journal on Numerical Analysis, 2006, 44, 613-635.	2.3	62
33	Preserving geometric properties of the exponential matrix by block Krylov subspace methods. BIT Numerical Mathematics, 2006, 46, 813-830.	2.0	25
34	Smooth singular value decomposition on the symplectic group and Lyapunov exponents approximation*. Calcolo, 2006, 43, 1-15.	1.1	9
35	Computation of the Exponential of Large Sparse Skew-Symmetric Matrices. SIAM Journal of Scientific Computing, 2005, 27, 278-293.	2.8	22
36	On the Low-Rank Approximation of Data on the Unit Sphere. SIAM Journal on Matrix Analysis and Applications, 2005, 27, 46-60.	1.4	13

#	Article	IF	CITATIONS
37	GEOMETRIC INTEGRATION OF ODES ON THE GENERAL LINEAR GROUP OF MATRICES. , 2005, , .		0
38	SEMI-EXPLICIT TIME-STEPPING METHODS FOR DYNAMICAL SYSTEMS WITH COMPLEMENTARY CONSTRAINTS. , 2005, , .		0
39	Smooth SVD on the Lorentz group with application to computation of Lyapunov exponents. Journal of Computational and Applied Mathematics, 2004, 164-165, 255-264.	2.0	6
40	A Hybrid Numerical Technique for the Solution of a Class of Implicit Matrix Differential Equation. Lecture Notes in Computer Science, 2004, , 459-466.	1.3	0
41	Numerical Integration of a Class of Ordinary Differential Equations on the General Linear Group of Matrices. Numerical Algorithms, 2003, 34, 271-281.	1.9	3
42	Differential approaches for computing Euclidean diagonal norm balanced realizations in control theory. Future Generation Computer Systems, 2003, 19, 1155-1163.	7.5	2
43	Exponential monotonicity of quadratic forms in ODEs and preserving methods. Future Generation Computer Systems, 2003, 19, 1187-1195.	7.5	1
44	Lyapunov Exponents of Systems Evolving on Quadratic Groups. SIAM Journal on Matrix Analysis and Applications, 2003, 24, 1175-1185.	1.4	7
45	A Survey on Methods for Computing Matrix Exponentials in Numerical Schemes for ODEs. Lecture Notes in Computer Science, 2003, , 111-120.	1.3	9
46	Geometric Integration on Manifold of Square Oblique Rotation Matrices. SIAM Journal on Matrix Analysis and Applications, 2002, 23, 974-989.	1.4	13
47	Runge Kutta Type Methods for Isodynamical Matrix Flows: Applications to Balanced Realizations. Computing (Vienna/New York), 2002, 68, 255-274.	4.8	2
48	Symplectic Methods Based on the Matrix Variational Equation for Hamiltonian System. Lecture Notes in Computer Science, 2002, , 526-535.	1.3	1
49	Numerical methods for dynamical systems in the Lorentz group. Nonlinear Analysis: Theory, Methods & Applications, 2001, 47, 2585-2596.	1.1	1
50	Applications of the Cayley approach in the numerical solution of matrix differential systems on quadratic groups. Applied Numerical Mathematics, 2001, 36, 35-55.	2.1	23
51	Runge-Kutta Type Methods Based on Geodesics for Systems of ODEs on the Stiefel Manifold. BIT Numerical Mathematics, 2001, 41, 912-923.	2.0	16
52	Newton-type methods for solving nonlinear equations on quadratic matrix groups. Journal of Computational and Applied Mathematics, 2000, 115, 357-368.	2.0	4
53	Numerical methods for Hermitian unitary differential systems. Journal of Computational and Applied Mathematics, 1999, 111, 133-145.	2.0	3
54	The Cayley transform in the numerical solution of unitary differential systems. Advances in Computational Mathematics, 1998, 8, 317-334.	1.6	65

#	Article	IF	CITATIONS
55	One step semi-explicit methods based on the Cayley transform for solving isospectral flows. Journal of Computational and Applied Mathematics, 1998, 89, 219-223.	2.0	16
56	The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices. Applied Mathematics Letters, 1998, 11, 61-69.	2.7	26
57	Tridiagonal splittings in the conditioning and parallel solution of banded linear systems. Linear Algebra and Its Applications, 1997, 251, 249-265.	0.9	1
58	Variable step-size techniques in continuous Runge-Kutta methods for isospectral dynamical systems. Journal of Computational and Applied Mathematics, 1997, 82, 261-278.	2.0	7
59	Numerical procedures based on Runge-Kutta methods for solving isospectral flows. Applied Numerical Mathematics, 1997, 25, 443-459.	2.1	7
60	Bounds for the solutions of a class of tridiagonal linear systems. Linear Algebra and Its Applications, 1994, 202, 221-233.	0.9	2
61	Boundary value methods and BV-stability in the solution of initial value problems. Applied Numerical Mathematics, 1993, 11, 225-239.	2.1	28
62	Methods based on boundary value techniques for solving parabolic equations on parallel computers. Parallel Computing, 1993, 19, 979-991.	2.1	1
63	Boundary conditions and conditioning in the solution of discrete BVPs. Applied Mathematics Letters, 1993, 6, 43-49.	2.7	0
64	Two-step boundary value methods in the solution of ODEs. Computers and Mathematics With Applications, 1993, 26, 91-100.	2.7	10
65	Stability of a three-point scheme for linear second order singularly perturbed BVPs with turning points. Applied Mathematics and Computation, 1992, 52, 279-300.	2.2	6
66	The invertibility of a class of tridiagonal matrices. Applied Mathematics Letters, 1992, 5, 47-51.	2.7	0
67	Parallel methods in the numerical treatment of population dynamic models. Parallel Computing, 1992, 18, 767-777.	2.1	1
68	A Method for the Numerical Solution of a Class of Nonlinear Diffusion Equations. Rocky Mountain Journal of Mathematics, 1991, 21, .	0.4	4
69	One-step collocation methods for differential-algebraic systems of index 1. Journal of Computational and Applied Mathematics, 1990, 29, 145-159.	2.0	3
70	A projection method for the numerical solution of linear systems in separable stiff differential equations. International Journal of Computer Mathematics, 1989, 30, 191-206.	1.8	2
71	An explicit two-step method for solving stiff systems of ordinary differential equations. International Journal of Computer Mathematics, 1987, 22, 271-285.	1.8	0
72	Metodi ad un passo fortemente stabili per equazioni integrali di Volterra di seconda specie di tipo stiff. Calcolo, 1986, 23, 249-263.	1.1	3

#	Article	IF	CITATIONS
73	A finite difference scheme for a stiff problem arising in the numerical solution of a population dynamic model with spatial diffusion. Nonlinear Analysis: Theory, Methods & Applications, 1985, 9, 1-12.	1.1	16
74	Stability and Asymptotic Behaviour for the Numerical Solution of a Reaction—Diffusion Model for a Deterministic Diffusive Epidemic. IMA Journal of Numerical Analysis, 1983, 3, 341-351.	2.9	4
75	Decay to spatially homogeneous states for the numerical solution of reaction-diffusion systems. Calcolo, 1982, 19, 193-208.	1.1	5
76	A hybrid scheme for solving a model of population dynamics. Calcolo, 1982, 19, 379-395.	1.1	14