Debayan Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000797/publications.pdf

Version: 2024-02-01

		623734	3	395702	
50	1,114	14		33	
papers	citations	h-index		g-index	
			. '		
52	52	52		1198	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	Citations
1	P2X2 receptor subunit interfaces are missense variant hotspots, where mutations tend to increase apparent ATP affinity. British Journal of Pharmacology, 2022, 179, 3859-3874.	5.4	1
2	Synthesis and structural anomaly of <scp>xyloketalsâ€unique</scp> benzoxacycles: A review. Journal of Heterocyclic Chemistry, 2021, 58, 8-27.	2.6	8
3	Ion channel engineering using protein trans-splicing. Methods in Enzymology, 2021, 654, 19-48.	1.0	4
4	Ruthenium (VIII) Catalysed Dearomative Pyridyl Câ^'X Activation: Direct Synthesis of N ―Alkylâ€2â€pyridones. Asian Journal of Organic Chemistry, 2021, 10, 1786-1794.	2.7	2
5	Organoâ€Acid Catalysed Synthesis of 2,2â€Disubstituted Chromans and 1,1â€Disubstituted Indanols/Indenols. ChemistrySelect, 2021, 6, 6193-6196.	1.5	3
6	A year away to 100th year of vitamin E synthesis. Journal of Heterocyclic Chemistry, 2021, 58, 1741-1748.	2.6	9
7	Gold(III) catalyzed stereoselective synthesis of dialkyl dihydrofuran acetates. Tetrahedron, 2021, 95, 132367.	1.9	0
8	A combined experimental and theoretical analysis on the solid-state supramolecular assemblies of pentâ€'2-ynol derivatives. Journal of Molecular Structure, 2021, 1243, 130813.	3.6	4
9	Regioselective C(sp ²)â^³C(sp ³) Oxidative Bond Cleavage of 1â€(1â€Hydroxyalkyl) naphthalenâ€2â€ols: First Synthesis of 1â€Azidoâ€haloâ€naphthaleneâ€2(1 <i>H</i>)â€ones. Israel Journal of Chemistry, 2021, 61, 327-331.	2.3	2
10	[2+2] Photochemical Cycloaddition in Organic Synthesis. European Journal of Organic Chemistry, 2020, 2020, 1310-1326.	2.4	119
11	Copper(I) catalysed direct synthesis of 2-methylene-4-chromanols. Tetrahedron Letters, 2020, 61, 151341.	1.4	2
12	Visible Light Assisted Selenylative Intramolecular Dearomative Carbo‧pirocyclisation (IDCS) of Homologated‥nones. European Journal of Organic Chemistry, 2020, 2020, 891-896.	2.4	18
13	Copper(I)-Catalyzed Synthesis of Functionalized Indolizinones from Substituted Pyridine Homologated Ynones. Journal of Organic Chemistry, 2020, 85, 902-911.	3.2	13
14	Stereoselective Synthesis of Spiroâ€Azacycles Through Triâ€bromide Mediated Oxidative Dearomatization. European Journal of Organic Chemistry, 2020, 2020, 397-401.	2.4	6
15	Gram scale synthesis of alpha-cyanoalkylboronic esters via direct B–B and C–N bond cleavage. Synthetic Communications, 2020, 50, 3308-3313.	2.1	0
16	Febrile temperature change modulates CD4 T cell differentiation via a TRPV channel-regulated Notch-dependent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22357-22366.	7.1	24
17	Copper(<scp>i</scp>) catalyzed synthesis of selanyl methylene 4-chromanol and aurone derivatives. Organic and Biomolecular Chemistry, 2020, 18, 4619-4627.	2.8	7
18	Revisiting the Addition of inâ€situ Nucleophiles to Allenic Ketones: An Entry Towards Synthesis of Benzodioxins. European Journal of Organic Chemistry, 2020, 2020, 1727-1731.	2.4	4

#	Article	IF	CITATIONS
19	Stereoselective synthesis of para-quinone monoketals through tri-bromide (TBr) mediated oxidative dearomatization of phenols. Tetrahedron Letters, 2020, 61, 151646.	1.4	4
20	Direct synthesis of regioselective α-allyl α-selanyl ketones and selanyl tetra-hydrofurans. Tetrahedron Letters, 2020, 61, 151920.	1.4	1
21	Controlling Stereoselectivity in Tribromide Mediated Oxidative Dearomatisations – Synthesis of Selective Spirofuranoâ€naphthalones. European Journal of Organic Chemistry, 2019, 2019, 5894-5904.	2.4	7
22	Redox Economic Synthesis of TrisubstitutedPiperidones via Ruthenium Catalyzed Atomâ€Economic Couplings of Nâ€Protected 1,5â€Aminoalcohols and Michael Acceptors. Advanced Synthesis and Catalysis, 2019, 361, 5648-5653.	4.3	3
23	Ruthenium(VIII)-Catalyzed <i>ipso</i> Phenols. Organic Letters, 2019, 21, 4132-4136.	4.6	14
24	Monohydrochloride Assisted Synthesis of Functionalized Isoxazoles and Pyrazoles from Allenic Ketones: First Synthesis of (⟨i>Z⟨li⟩)â€2â€Methylâ€7Hâ€benzo[b]pyrazolo[5,1â€d][1,5]oxazocines. European Journal of Organic Chemistry, 2019, 2019, 2035-2049.	2.4	5
25	Radical-induced expeditious stereoselective synthesis of 2-alkyl 3-allyl trans-2,3-dihydrobenzofurans (TADHBs). Synthetic Communications, 2018, 48, 574-581.	2.1	2
26	Rhodium-Catalyzed Insertion Reaction of PhP Group of Pentaphenylcyclopentaphosphine with Acyclic and Cyclic Disulfides. Organic Letters, 2018, 20, 938-941.	4.6	12
27	A Dual-App Nucleoside Probe Provides Structural Insights into the Human Telomeric Overhang in Live Cells. Journal of the American Chemical Society, 2018, 140, 12622-12633.	13.7	57
28	PTAB mediated open air synthesis of sulfonamides, thiosulfonates and symmetrical disulfanes. Tetrahedron Letters, 2018, 59, 2360-2364.	1.4	15
29	Protein–Lipid Interfaces Can Drive the Functions of Membrane-Embedded Protein–Protein Complexes. ACS Chemical Biology, 2018, 13, 2689-2698.	3.4	7
30	Story of Helianane and Heliannuols - Unique Structurally Diverse Benzoxacycles, Interesting Intrigues and Structural Anomaly. Current Organic Chemistry, 2018, 22, 18-56.	1.6	13
31	"A Jack of Trio―robust one-pot metal free oxidative amination, azidation and peroxidation of phenols. New Journal of Chemistry, 2017, 41, 3715-3718.	2.8	27
32	Stereoselective synthesis of Heliannuol G. Tetrahedron Letters, 2017, 58, 4336-4339.	1.4	7
33	Atom-Economical Palladium Carbon-Catalyzed <i>de Novo</i> Synthesis of Trisubstituted Nicotinonitriles. Journal of Organic Chemistry, 2017, 82, 9012-9022.	3.2	13
34	Facile TMSOI catalysed stereoselective synthesis of 2-Methylene selanyl-4-chromanols and anti-cancer activity. Tetrahedron, 2017, 73, 7200-7209.	1.9	12
35	Phenyl trimethyl ammonium tribromide mediated robust one-pot synthesis of spiro-oxacycles $\hat{a} \in \hat{a}$ an economic route $\hat{a} \in \hat{a}$ stereoselective synthesis of oxaspirohexacyclodieneones. Organic and Biomolecular Chemistry, 2016, 14, 7883-7898.	2.8	23
36	Synergistic interactions of surfactant blends in aqueous medium are reciprocated in non-polar medium with improved efficacy as a nanoreactor. RSC Advances, 2016, 6, 55104-55116.	3.6	8

#	Article	IF	CITATIONS
37	PhSeBr mediated hydroxylative oxidative dearomatization of naphthols – an open air facile one-pot synthesis of ketols. RSC Advances, 2016, 6, 26886-26894.	3.6	13
38	Unprecedented C-Methylation at the 2-Position of 2-Carboxy- 4-Chromanones – A Case Study with the Corey–Chaykovsky Reagent. Synlett, 2015, 26, 2472-2472.	1.8	0
39	Unprecedented C-Methylation at the 2-Position of 2-Carboxy-4-Chromanones – A Case Study with the Corey–Chaykovsky Reagent. Synlett, 2014, 25, 2649-2653.	1.8	4
40	Unprecedented C-Methylation at the 2-Position of 2-Carboxy-4-Chromanones – A Case Study with the Corey–Chaykovsky Reagent. Synlett, 2014, 25, e4-e4.	1.8	0
41	Insight into supramolecular self-assembly directed by weak interactions in acetophenone derivatives: crystal structures and Hirshfeld surface analyses. CrystEngComm, 2011, 13, 6728.	2.6	161
42	Use of π–π forces to steer the assembly of chromone derivatives into hydrogen bonded supramolecular layers: crystal structures and Hirshfeld surface analyses. CrystEngComm, 2011, 13, 4528.	2.6	209
43	On the Possibility of Tuning Molecular Edges To Direct Supramolecular Self-Assembly in Coumarin Derivatives through Cooperative Weak Forces: Crystallographic and Hirshfeld Surface Analyses. Crystal Growth and Design, 2011, 11, 4837-4849.	3.0	184
44	Biomimetic type approach to the tricyclic core of xyloketals. Application to a short, stereocontrolled synthesis of alboatrin and first synthesis of xyloketal G. Tetrahedron, 2011, 67, 4559-4568.	1.9	18
45	Synthesis of bruguierol A employing ring closing metathesis. Tetrahedron Letters, 2011, 52, 3232-3233.	1.4	7
46	A biomimetic type expedient approach to the tricyclic core of xyloketals. Application to a short, stereocontrolled synthesis of alboatrin and a remarkable epi to natural isomerisation. Tetrahedron Letters, 2009, 50, 1431-1434.	1.4	11
47	Expeditious synthesis of helianane and C-10 halogenated heliananes employing ring-closing metathesis. Tetrahedron Letters, 2009, 50, 4683-4684.	1.4	18
48	Total synthesis of alboatrin, a phytotoxic metabolite from Verticillium alboatrum. Tetrahedron, 2008, 64, 3212-3216.	1.9	25
49	Facile Aromatic Claisen Rearrangement Catalysed by Tin(IV) Chloride. Synlett, 2008, 2008, 653-654.	1.8	5
50	Gold(III)-catalyzed synthesis of 2,5-disubstituted furans from substituted 5-methoxyhex-3-yn-2-ols—Mechanistic outlook. Synthetic Communications, 0, , 1-9.	2.1	1