
Erwan Le Grognec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000588/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemically Modified Cellulose Filter Paper for Heavy Metal Remediation in Water. ACS Sustainable Chemistry and Engineering, 2017, 5, 1965-1973.	6.7	192
2	Radical Polymerization of Styrene Controlled by Half-Sandwich Mo(III)/Mo(IV) Couples:Â All Basic Mechanisms Are Possible. Journal of the American Chemical Society, 2001, 123, 9513-9524.	13.7	188
3	Biodiesel production from palm oil using sulfonated graphene catalyst. Renewable Energy, 2017, 106, 135-141.	8.9	121
4	Using Aryl Diazonium Salts in Palladium-Catalyzed Reactions under Safer Conditions. Organic Process Research and Development, 2014, 18, 1786-1801.	2.7	108
5	An Autonomous Self-Optimizing Flow Reactor for the Synthesis of Natural Product Carpanone. Journal of Organic Chemistry, 2018, 83, 14286-14299.	3.2	86
6	Methodologies Limiting or Avoiding Contamination by Organotin Residues in Organic Synthesis. Chemical Reviews, 2015, 115, 10207-10260.	47.7	78
7	C–H Arylation of Benzoquinone in Water through Aniline Activation: Synergistic Effect of Graphite-Supported Copper Oxide Nanoparticles. Journal of Organic Chemistry, 2013, 78, 4604-4609.	3.2	76
8	Copper-catalyzed free-radical C–H arylation of pyrroles. Chemical Communications, 2014, 50, 5236-5238.	4.1	76
9	Chemically-modified cellulose paper as smart sensor device for colorimetric and optical detection of hydrogen sulfate in water. Chemical Communications, 2016, 52, 2525-2528.	4.1	76
10	Practical and scalable synthesis of sulfonated graphene. Carbon, 2016, 96, 342-350.	10.3	67
11	Handling diazonium salts in flow for organic and material chemistry. Organic Chemistry Frontiers, 2015, 2, 590-614.	4.5	59
12	Graphite-supported ultra-small copper nanoparticles – Preparation, characterization and catalysis applications. Carbon, 2015, 93, 974-983.	10.3	55
13	Mild Electrochemical Deprotection of <i>N</i> â€Phenylsulfonyl <i>N</i> â€6ubstituted Amines Derived from (<i>R</i>)â€Phenylglycinol. European Journal of Organic Chemistry, 2008, 2008, 383-391.	2.4	45
14	Polymer-Supported Organotin Reagents for Regioselective Halogenation of Aromatic Amines. Journal of Organic Chemistry, 2005, 70, 2870-2873.	3.2	42
15	Continuous-Flow Heck–Matsuda Reaction: Homogeneous versus Heterogeneous Palladium Catalysts. Journal of Organic Chemistry, 2014, 79, 8255-8262.	3.2	41
16	A paper-based biomimetic device for the reduction of Cu(<scp>ii</scp>) to Cu(<scp>i</scp>) – application to the sensing of Cu(<scp>ii</scp>). Chemical Communications, 2016, 52, 6569-6572.	4.1	39
17	Cellulose paper grafted with polyamines as powerful adsorbent for heavy metals. Cellulose, 2018, 25, 4043-4055.	4.9	37
18	Heck–Matsuda Arylation of Olefins Through a Bicatalytic Approach: Improved Procedures and Rationalization. Advanced Synthesis and Catalysis, 2014, 356, 1065-1071.	4.3	36

ERWAN LE GROGNEC

#	Article	IF	CITATIONS
19	Preparation of Î ³ -siloxyallyltributylstannanes and their use in the synthesis of (±)-1-deoxy-6,8a-di-epi-castanospermine. Organic and Biomolecular Chemistry, 2004, 2, 3128-3133.	2.8	35
20	Electrochemical Cleavage of Sulfonamides: An Efficient and Tunable Strategy to Prevent β-Fragmentation and Epimerization. Organic Letters, 2012, 14, 942-945.	4.6	35
21	Evaluation of polymer-supported vinyltin reagents in the Stille cross-coupling reaction. Tetrahedron Letters, 2007, 48, 1781-1785.	1.4	30
22	Use of polymer-supported phenyltin for the creation of aryl–aryl or aryl–heteroaryl bonds via Stille cross-coupling reactions. Journal of Organometallic Chemistry, 2010, 695, 103-110.	1.8	30
23	Fabrication of Robust Spatially Resolved Photochromic Patterns on Cellulose Papers by Covalent Printing for Anticounterfeiting Applications. ACS Applied Polymer Materials, 2019, 1, 1240-1250.	4.4	30
24	Harnessing the Dual Properties of Thiolâ€Grafted Cellulose Paper for Click Reactions: A Powerful Reducing Agent and Adsorbent for Cu. Angewandte Chemie - International Edition, 2016, 55, 13549-13552.	13.8	27
25	Preparation and Transmetallation of Enantioenriched αâ€Aminoorganostannanes Derived from <i>N</i> â€Boc Phenylglycinol: Application to the Synthesis of Alafosfalin. European Journal of Organic Chemistry, 2008, 2008, 3344-3351.	2.4	26
26	Graphene-promoted acetalisation of glycerol under acid-free conditions. Green Chemistry, 2016, 18, 1531-1537.	9.0	26
27	Preparation of Allyltin Reagents Grafted on Solid Support: Clean and Easily Recyclable Reagents for Allylation of Aldehydes. Chemistry - A European Journal, 2006, 12, 6816-6828.	3.3	25
28	Allylstannation of N-acyliminium intermediates: a possible method for the stereocontrolled synthesis of polyhydroxypiperidines. Tetrahedron Letters, 2004, 45, 761-764.	1.4	24
29	Palladium Nanoparticles Supported on Sulfonic Acid Functionalized Silica as Trifunctional Heterogeneous Catalysts for Heck and Suzuki Reactions. ChemCatChem, 2015, 7, 2085-2094.	3.7	23
30	Cellulose paper azide as a molecular platform for versatile click ligations: application to the preparation of hydrophobic paper surface. Cellulose, 2018, 25, 1395-1411.	4.9	22
31	Preparation of Chiral 2-Stannyloxazolidines and First Considerations on the Transacetalisation Reaction Mechanism. European Journal of Organic Chemistry, 2004, 2004, 4251-4267.	2.4	21
32	Writing and erasing hidden optical information on covalently modified cellulose paper. Chemical Communications, 2016, 52, 7672-7675.	4.1	19
33	Photoresponsive cellulose paper as a molecular printboard for covalent printing. Journal of Materials Chemistry C, 2017, 5, 5154-5162.	5.5	19
34	Hydrophobic Covalent Patterns on Cellulose Paper through Photothiol-X Ligations. ACS Omega, 2018, 3, 9155-9159.	3.5	19
35	Synthesis of 5-Substituted 1 <i>H</i> -Tetrazoles from Nitriles by Continuous Flow: Application to the Synthesis of Valsartan. Organic Process Research and Development, 2020, 24, 752-761.	2.7	19
36	Tinâ€Catalyzed Synthesis of 5â€Substituted 1 <i>H</i> â€Tetrazoles from Nitriles: Homogeneous and Heterogeneous Procedures. Advanced Synthesis and Catalysis, 2019, 361, 747-757.	4.3	18

ERWAN LE GROGNEC

#	Article	IF	CITATIONS
37	Stereodivergent Synthesis of Iminosugars from Stannylated Derivatives of (<i>S</i>)-Vinylglycinol. Organic Letters, 2013, 15, 160-163.	4.6	17
38	Identification of Chiralcis- andtrans-2-Stannyloxazolidines by Their NMR Spectra and Solid-State Structures. European Journal of Organic Chemistry, 2004, 2004, 4268-4279.	2.4	16
39	Multicatalytic dearomatization of phenols into epoxyquinols <i>via</i> a photooxygenation process. Chemical Communications, 2019, 55, 7398-7401.	4.1	16
40	Dialkyl(butadiene)cyclopentadienylmolybdenum(III) Complexes. Synthesis, Characterization, and Reactivity. Organometallics, 2000, 19, 3842-3853.	2.3	14
41	N-Boc-2-stannyloxazolidines Derived from (R)-Phenylgly- cinol: Preparation, Transmetalation, and Use as Precursors  of Enantioenriched (α-Aminoalkyl)triorganostannanes. Organometallics, 2004, 23, 943-945.	2.3	14
42	Synthesis, characterization and primary evaluation of the synthetic efficiency of supported vinyltins and allyltins. Journal of Organometallic Chemistry, 2010, 695, 1414-1424.	1.8	14
43	Synthesis of Highly Enantioenriched Chiral α-Aminoorganotins via Diastereoselective Ring Opening of Chiral <i>N</i> -(Arenesulfonyl) 2-Tributylstannyloxazolidines. Journal of Organic Chemistry, 2009, 74, 5822-5838.	3.2	13
44	Heck-Matsuda Reaction Catalyzed by Heterogeneous Palladium Catalysts. Current Organic Chemistry, 2015, 19, 695-707.	1.6	13
45	An efficient and scalable synthesis of N-(benzyloxycarbonyl)- and N-(methyloxycarbonyl)-(S)-vinylglycinol. Tetrahedron Letters, 2010, 51, 3226-3228.	1.4	11
46	<i>syn</i> â€Allylstannation of <i>N</i> â€Acyliminium Intermediates by Tributyl[γâ€{silyloxy)allyl]stannanes: A Key Reaction for the Diastereoselective Synthesis of Polyhydroxypiperidines and Polyhydroxyazepanes. European Journal of Organic Chemistry, 2011, 2011, 4133-4144.	2.4	11
47	A highly selective colorimetric and fluorescent chemosensor for Cr2+ in aqueous solutions. Tetrahedron Letters, 2017, 58, 505-508.	1.4	11
48	Stable 17-electron Mo(III) complexes containing alkyl ligands. Inorganic Chemistry Communication, 1999, 2, 95-97.	3.9	10
49	Diastereoselective synthesis of chiral α-aminoorganotributyltins via ring-opening of 2-tributylstannyloxazolidines. Journal of Organometallic Chemistry, 2006, 691, 1488-1497.	1.8	10
50	Diene-Containing Half-Sandwich MoIII Complexes as Ethylene Polymerization Catalysts: Experimental and Theoretical Studies. Chemistry - A European Journal, 2001, 7, 4572-4583.	3.3	9
51	Atom Economical Photocatalytic Oxidation of Phenols and Site-Selective Epoxidation Toward Epoxyquinols. Journal of Organic Chemistry, 2021, 86, 18192-18203.	3.2	9
52	Microwave-assisted synthesis of α-ethoxycarbamates. Tetrahedron, 2009, 65, 9180-9187.	1.9	8
53	Preparation of enantiomerically enriched αâ€aminoorganostannanes and their applications in stereoselective synthesis. Chirality, 2010, 22, 864-869.	2.6	8

54 Tin in Organic Synthesis. , 0, , 497-665.

#	Article	IF	CITATIONS
55	Addition of Î ³ -silyloxyallyltins on ethyl glyoxylate: evaluation of the influence of the experimental conditions on the stereochemical course of the reaction. Tetrahedron, 2010, 66, 1570-1580.	1.9	6
56	Synthesis, characterisation, and molecular and electronic structure of CpMoCl2(R1CCR2) (R1, R2â€=â€Ph Transactions RSC, 2000, , 1499-1506.	,) Tj ETQq 2.3	0 0 0 rgBT /C 5
57	A versatile stereocontrolled synthesis of 2-deoxyiminosugar <i>C</i> -glycosides and their evaluation as glycosidase inhibitors. Organic and Biomolecular Chemistry, 2021, 19, 1083-1099.	2.8	4
58	Interaction of half-sandwich alkylmolybdenum(III) complexes with B(C6F5)3. The X-ray structure of [CpMo(η4-C4H6)(Î ¹ ⁄4-Cl)(Î ¹ ⁄4-CH2)(O)MoCp][CH3B(C6F5)3]. Journal of Organometallic Chemistry, 2001, 640, 113-120.	1.8	3
59	Stereoselective Synthesis of Stannylated Dehydropiperidines and Dehydroazepanes. European Journal of Organic Chemistry, 2016, 2016, 5146-5159.	2.4	3
60	Snâ^'Li Transmetalation of αâ€Aminoorganostannanes for the Stereoselective Synthesis of Substituted Dehydropiperidines and Dehydroazepanes. Advanced Synthesis and Catalysis, 2019, 361, 3777-3786.	4.3	3
61	3.24 Stoichiometric Auxiliary Ligands for Metals and Main Group Elements: Ligands for Tin and Stannanes. , 2012, , 751-779.		2
62	Graphene-catalyzed transacetalization under acid-free conditions. Tetrahedron Letters, 2016, 57, 4637-4639.	1.4	2
63	Precursors of Chiral α-Amino Anions: An Improved Synthesis of Chiral N-(α-Tributylstannylorgano)oxazolidin-2-ones Derived from (R)- or (S)-Phenylglycinol. Synthesis, 2006, 2006, 4151-4158.	2.3	1
64	Allylstannation of N-Acyliminium Intermediates: A Possible Method for the Stereocontrolled Synthesis of Polyhydroxypiperidines ChemInform, 2004, 35, no.	0.0	0
65	N-Boc-2-stannyloxazolidines Derived from (R)-Phenylglycinol: Preparation, Transmetalation, and Use as Precursors of Enantioenriched (α-Aminoalkyl)triorganostannanes ChemInform, 2004, 35, no.	0.0	0
66	Preparation of ?-Siloxyallyltributylstannanes and Their Use in the Synthesis of (.+)-1-Deoxy-6,8a-di-epi-castanospermine ChemInform, 2005, 36, no.	0.0	0
67	Polymer-Supported Organotin Reagents for Regioselective Halogenation of Aromatic Amines ChemInform, 2005, 36, no.	0.0	0
68	Stoichiometric Auxiliary Ligands for Metals and Main Group Elements: Ligands for Tin and Stannanesâ~†. , 2014, , .		0