Danila Moscone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000555/publications.pdf

Version: 2024-02-01

213 papers

11,521 citations

63 h-index 95 g-index

215 all docs

215 docs citations

215 times ranked

9562 citing authors

#	Article	IF	CITATIONS
1	Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosensors and Bioelectronics, 2021, 171, 112686.	5.3	331
2	Prussian Blue based screen printed biosensors with improved characteristics of long-term lifetime and pH stability. Biosensors and Bioelectronics, 2003, 18, 165-174.	5.3	314
3	Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC - Trends in Analytical Chemistry, 2016, 79, 114-126.	5.8	303
4	Construction and Analytical Characterization of Prussian Blue-Based Carbon Paste Electrodes and Their Assembly as Oxidase Enzyme Sensors. Analytical Chemistry, 2001, 73, 2529-2535.	3.2	227
5	Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosensors and Bioelectronics, 2019, 126, 346-354.	5.3	227
6	Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Blue-modified screen-printed electrode. Analytica Chimica Acta, 2006, 580, 155-162.	2.6	226
7	Recent advances in biosensors based on enzyme inhibition. Biosensors and Bioelectronics, 2016, 76, 180-194.	5.3	180
8	Carbon black as an outstanding and affordable nanomaterial for electrochemical (bio)sensor design. Biosensors and Bioelectronics, 2020, 156, 112033.	5.3	177
9	Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosensors and Bioelectronics, 2007, 22, 1434-1440.	5.3	170
10	Novel reagentless paper-based screen-printed electrochemical sensor to detect phosphate. Analytica Chimica Acta, 2016, 919, 78-84.	2.6	156
11	Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Mikrochimica Acta, 2016, 183, 2063-2083.	2.5	155
12	A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Analytica Chimica Acta, 2017, 960, 123-130.	2.6	151
13	An electrochemical immunosensor for aflatoxin M1 determination in milk using screen-printed electrodes. Biosensors and Bioelectronics, 2005, 21, 588-596.	5.3	150
14	Bismuth-modified electrodes for lead detection. TrAC - Trends in Analytical Chemistry, 2010, 29, 1295-1304.	5.8	141
15	Biosensors based on cholinesterase inhibition for insecticides, nerve agents and aflatoxin B1 detection (review). Mikrochimica Acta, 2010, 170, 193-214.	2.5	140
16	New electrochemical sensors for detection of nitrites and nitrates. Journal of Electroanalytical Chemistry, 2001, 509, 66-72.	1.9	137
17	Laccase biosensor based on screen-printed electrode modified with thionine–carbon black nanocomposite, for Bisphenol A detection. Electrochimica Acta, 2013, 109, 340-347.	2.6	137
18	How cutting-edge technologies impact the design of electrochemical (bio)sensors for environmental analysis. A review. Analytica Chimica Acta, 2017, 959, 15-42.	2.6	133

#	Article	IF	CITATIONS
19	Enzymatic determination of BPA by means of tyrosinase immobilized on different carbon carriers. Biosensors and Bioelectronics, 2007, 23, 60-65.	5.3	131
20	Fully integrated ready-to-use paper-based electrochemical biosensor to detect nerve agents. Biosensors and Bioelectronics, 2017, 93, 46-51.	5. 3	129
21	A thionine-modified carbon paste amperometric biosensor for catechol and bisphenol A determination. Biosensors and Bioelectronics, 2010, 25, 2003-2008.	5.3	127
22	A three-dimensional carbon nanotube network for water treatment. Nanotechnology, 2014, 25, 065701.	1.3	125
23	Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability. Analytica Chimica Acta, 2003, 485, 111-120.	2.6	121
24	Nanostructured (Bio)sensors for smart agriculture. TrAC - Trends in Analytical Chemistry, 2018, 98, 95-103.	5.8	115
25	Acetylcholinesterase sensor based on screen-printed carbon electrode modified with prussian blue. Analytical and Bioanalytical Chemistry, 2005, 383, 597-604.	1.9	114
26	Preparation of paper-based devices for reagentless electrochemical (bio)sensor strips. Nature Protocols, 2019, 14, 2437-2451.	5 . 5	114
27	Screenâ€Printed Electrodes Modified with Carbon Nanomaterials: A Comparison among Carbon Black, Carbon Nanotubes and Graphene. Electroanalysis, 2015, 27, 2230-2238.	1.5	112
28	High performance electrochemical sensor based on modified screen-printed electrodes with cost-effective dispersion of nanostructured carbon black. Electrochemistry Communications, 2010, 12, 346-350.	2.3	111
29	Carbon Blackâ€Modified Screenâ€Printed Electrodes as Electroanalytical Tools. Electroanalysis, 2012, 24, 743-751.	1.5	111
30	Acetylcholinesterase biosensor based on self-assembled monolayer-modified gold-screen printed electrodes for organophosphorus insecticide detection. Sensors and Actuators B: Chemical, 2013, 179, 201-208.	4.0	110
31	A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosensors and Bioelectronics, 2019, 129, 15-23.	5. 3	103
32	Characterisation of Prussian blue modified screen-printed electrodes for thiol detection. Journal of Electroanalytical Chemistry, 2004, 563, 229-237.	1.9	102
33	Acetylcholinesterase biosensor based on single-walled carbon nanotubesâ€"Co phtalocyanine for organophosphorus pesticides detection. Talanta, 2011, 85, 216-221.	2.9	97
34	Carbon black as successful screen-printed electrode modifier for phenolic compound detection. Electrochemistry Communications, 2015, 60, 78-82.	2.3	95
35	Hg2+ detection by measuring thiol groups with a highly sensitive screen-printed electrode modified with a nanostructured carbon black film. Electrochimica Acta, 2011, 56, 4209-4215.	2.6	93
36	Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System. Environmental Science & Emp; Technology, 2015, 49, 7934-7939.	4.6	92

#	Article	IF	Citations
37	A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part) Tj ETQq1	l 0 ₅ 784314	rgBT /Over
38	Development of a bio-electrochemical assay for AFB1 detection in olive oil. Biosensors and Bioelectronics, 2009, 24, 1962-1968.	5.3	89
39	Screen-printed biosensor modified with carbon black nanoparticles for the determination of paraoxon based on the inhibition of butyrylcholinesterase. Mikrochimica Acta, 2015, 182, 643-651.	2.5	88
40	A lactate electrode with lactate oxidase immobilized on nylon net for blood serum samples in flow systems. Analytica Chimica Acta, 1984, 157, 45-51.	2.6	87
41	Fast, sensitive and cost-effective detection of nerve agents in the gas phase using a portable instrument and an electrochemical biosensor. Analytical and Bioanalytical Chemistry, 2007, 388, 1049-1057.	1.9	87
42	Using Triplex-Forming Oligonucleotide Probes for the Reagentless, Electrochemical Detection of Double-Stranded DNA. Analytical Chemistry, 2010, 82, 9109-9115.	3.2	87
43	Screen-printed electrode modified with carbon black nanoparticles for phosphate detection by measuring the electroactive phosphomolybdate complex. Talanta, 2015, 141, 267-272.	2.9	87
44	Surface chemistry effects on the performance of an electrochemical DNA sensor. Bioelectrochemistry, 2009, 76, 208-213.	2.4	86
45	Investigation of amperometric detection of phosphate. Talanta, 2004, 63, 567-574.	2.9	83
46	Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta, 2018, 179, 186-192.	2.9	83
47	Effective electrochemical sensor based on screen-printed electrodes modified with a carbon black-Au nanoparticles composite. Sensors and Actuators B: Chemical, 2015, 212, 536-543.	4.0	81
48	Enzymatic Spectrophotometric Method for Aflatoxin B Detection Based on Acetylcholinesterase Inhibition. Analytical Chemistry, 2007, 79, 3409-3415.	3.2	80
49	Development of a Hydrogen Peroxide Sensor Based on Screen-Printed Electrodes Modified with Inkjet-Printed Prussian Blue Nanoparticles. Sensors, 2014, 14, 14222-14234.	2.1	80
50	Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor. Talanta, 2018, 187, 59-64.	2.9	79
51	Highly sensitive paper-based electrochemical sensor for reagent free detection of bisphenol A. Talanta, 2020, 216, 120924.	2.9	79
52	Stripping Analysis of As(III) by Means of Screenâ€Printed Electrodes Modified with Gold Nanoparticles and Carbon Black Nanocomposite. Electroanalysis, 2014, 26, 931-939.	1.5	76
53	Paper-based electrochemical peptide nucleic acid (PNA) biosensor for detection of miRNA-492: a pancreatic ductal adenocarcinoma biomarker. Biosensors and Bioelectronics, 2020, 165, 112371.	5.3	7 5
54	Amperometric acetylcholine and choline sensors with immobilized enzymes. Analytica Chimica Acta, 1986, 179, 439-444.	2.6	74

#	Article	IF	CITATIONS
55	Aflatoxin M1 determination in raw milk using a flow-injection immunoassay system. Analytica Chimica Acta, 2004, 520, 141-148.	2.6	74
56	Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosensors and Bioelectronics, 2010, 25, 2615-2621.	5. 3	70
57	Inside the different types of carbon black as nanomodifiers for screen-printed electrodes. Electrochimica Acta, 2019, 317, 673-683.	2.6	70
58	Subcutaneous microdialysis probe coupled with glucose biosensor for in vivo continuous monitoring. Talanta, 1992, 39, 1039-1044.	2.9	67
59	Disposable immunosensor for the determination of domoic acid in shellfish. Biosensors and Bioelectronics, 2004, 20, 190-196.	5.3	67
60	A reagent-free paper-based sensor embedded in a 3D printing device for cholinesterase activity measurement in serum. Sensors and Actuators B: Chemical, 2018, 258, 1015-1021.	4.0	67
61	Novel planar glucose biosensors for continuous monitoring use. Biosensors and Bioelectronics, 2005, 20, 1993-2000.	5.3	66
62	Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study. Sensors and Actuators B: Chemical, 2018, 265, 155-160.	4.0	66
63	Cholinesterase sensors based on screen-printed electrodes for detection of organophosphorus and carbamic pesticides. Analytical and Bioanalytical Chemistry, 2003, 377, 624-631.	1.9	65
64	Electroanalytical Characterization of Carbon Black Nanomaterial Paste Electrode: Development of Highly Sensitive Tyrosinase Biosensor for Catechol Detection. Analytical Letters, 2010, 43, 1688-1702.	1.0	64
65	Novel carbon black-cobalt phthalocyanine nanocomposite as sensing platform to detect organophosphorus pollutants at screen-printed electrode. Electrochimica Acta, 2016, 188, 574-581.	2.6	64
66	Paper-Based Strips for the Electrochemical Detection of Single and Double Stranded DNA. Analytical Chemistry, 2018, 90, 13680-13686.	3.2	64
67	Green nanomaterials fostering agrifood sustainability. TrAC - Trends in Analytical Chemistry, 2020, 125, 115840.	5.8	62
68	Electroanalytical Sensor Based on Gold-Nanoparticle-Decorated Paper for Sensitive Detection of Copper Ions in Sweat and Serum. Analytical Chemistry, 2021, 93, 5225-5233.	3.2	62
69	Electroanalytical Study of Prussian Blue Modified Glassy Carbon Paste Electrodes. Electroanalysis, 2003, 15, 1204-1211.	1.5	61
70	A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications. Biosensors and Bioelectronics, 2007, 22, 854-862.	5. 3	61
71	Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. Environmental Science and Pollution Research, 2016, 23, 8192-8199.	2.7	60
72	Precision medicine in Alzheimer's disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosensors and Bioelectronics, 2020, 165, 112411.	5 . 3	60

#	Article	IF	CITATIONS
73	Electrocatalytic oxidation of thiocholine at chemically modified cobalt hexacyanoferrate screen-printed electrodes. Journal of Electroanalytical Chemistry, 2009, 626, 66-74.	1.9	59
74	Detection of NADH via electrocatalytic oxidation at single-walled carbon nanotubes modified with Variamine blue. Electrochimica Acta, 2008, 53, 2161-2169.	2.6	56
75	Detection of Aflatoxin B1in Barley: Comparative Study of Immunosensor and HPLC. Analytical Letters, 2006, 39, 1559-1572.	1.0	55
76	Cardiac autonomic regulation after lung exposure to carbon nanotubes. Human and Experimental Toxicology, 2009, 28, 369-375.	1.1	55
77	Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sensors and Actuators B: Chemical, 2015, 221, 187-190.	4.0	55
78	Development of a disposable biosensor for lactate monitoring in saliva. Sensors and Actuators B: Chemical, 2016, 237, 8-15.	4.0	55
79	A label-free impedimetric aptasensor for the detection of Bacillus anthracis spore simulant. Biosensors and Bioelectronics, 2019, 126, 640-646.	5. 3	55
80	Carbon black assisted tailoring of Prussian Blue nanoparticles to tune sensitivity and detection limit towards H 2 O 2 by using screen-printed electrode. Electrochemistry Communications, 2014, 47, 63-66.	2.3	53
81	An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos. New Biotechnology, 2011, 29, 132-138.	2.4	52
82	Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M \hat{A}^{\otimes} . Sensors, 2017, 17, 2267.	2.1	52
83	Heat-treated milk differentiation by a sensitive lactulose assay. Food Chemistry, 2004, 84, 447-450.	4.2	51
84	Rapid determination of lactulose in milk by microdialysis and biosensors. Analyst, The, 1999, 124, 325-329.	1.7	49
85	An ELIME-array for detection of aflatoxin B1 in corn samples. Food Control, 2009, 20, 371-375.	2.8	48
86	Amperometric separation-free immunosensor for real-time environmental monitoring. Analytica Chimica Acta, 2001, 427, 173-180.	2.6	47
87	Part I: A comparative study of bismuth-modified screen-printed electrodes for lead detection. Analytica Chimica Acta, 2011, 707, 171-177.	2.6	46
88	Production of antibodies and development of highly sensitive formats of enzyme immunoassay for saxitoxin analysis. Analytical and Bioanalytical Chemistry, 2002, 373, 678-684.	1.9	45
89	Electrochemical biosensors for monitoring malolactic fermentation in red wine using two strains of Oenococcus oeni. Analytica Chimica Acta, 2004, 513, 357-364.	2.6	45
90	An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. Journal of Hazardous Materials, 2019, 373, 483-492.	6.5	45

#	Article	IF	CITATIONS
91	A novel continuous subcutaneous lactate monitoring systemâ [†] . Biosensors and Bioelectronics, 2005, 20, 2244-2250.	5.3	44
92	Electrosynthesis of poly-o-diaminobenzene on the Prussian Blue modified electrodes for improvement of hydrogen peroxide transducer characteristics. Bioelectrochemistry, 2002, 55, 145-148.	2.4	43
93	Glutathione amperometric detection based on a thiol–disulfide exchange reaction. Analytica Chimica Acta, 2006, 558, 164-170.	2.6	43
94	Experimental Comparison in Sensing Breast Cancer Mutations by Signal ON and Signal OFF Paper-Based Electroanalytical Strips. Analytical Chemistry, 2020, 92, 1674-1679.	3.2	43
95	A disposable immunosensor for detection of $17\hat{l}^2$ -estradiol in non-extracted bovine serum. Analytica Chimica Acta, 2006, 572, 11-16.	2.6	42
96	Extraction and Detection of Pesticides by Cholinesterase Inhibition in a Twoâ€Phase System: a Strategy to Avoid Heavy Metal Interference. Analytical Letters, 2005, 38, 1703-1719.	1.0	41
97	Toward continuous glucose monitoring with planar modified biosensors and microdialysis. Biosensors and Bioelectronics, 2007, 22, 2032-2039.	5.3	41
98	Bi-enzyme reactor for electrochemical detection of low concentrations of uric acid and glucose. Clinica Chimica Acta, 1995, 239, 153-165.	0.5	40
99	Reversible Enzyme Inhibition–Based Biosensors: Applications and Analytical Improvement Through Diagnostic Inhibition. Analytical Letters, 2009, 42, 1258-1293.	1.0	40
100	Direct Electrochemistry of Heme Proteins on Electrodes Modified with Didodecyldimethyl Ammonium Bromide and Carbon Black. Electroanalysis, 2012, 24, 1923-1931.	1.5	40
101	A modular electrochemical peptide-based sensor for antibody detection. Chemical Communications, 2014, 50, 8962.	2.2	40
102	Ammonia abatement in an enzymatic flow system for the determination of creatinine in blood sera and urine. Analytica Chimica Acta, 1985, 171, 175-184.	2.6	39
103	Paper-based electroanalytical strip for user-friendly blood glutathione detection. Sensors and Actuators B: Chemical, 2019, 294, 291-297.	4.0	39
104	Paper-based electrochemical peptide sensor for on-site detection of botulinum neurotoxin serotype A and C. Biosensors and Bioelectronics, 2021, 183, 113210.	5.3	39
105	Screen-printed electrode modified with carbon black and chitosan: a novel platform for acetylcholinesterase biosensor development. Analytical and Bioanalytical Chemistry, 2016, 408, 7299-7309.	1.9	38
106	Sustainable monitoring of $Zn(II)$ in biological fluids using office paper. Sensors and Actuators B: Chemical, 2017, 253, 1199-1206.	4.0	37
107	A new enzymatic spectrophotometric assay for the determination of lactulose in milk. Analytica Chimica Acta, 2000, 406, 217-224.	2.6	36
108	Towards an integrated biosensor array for simultaneous and rapid multi-analysis of endocrine disrupting chemicals. Analytica Chimica Acta, 2012, 751, 161-170.	2.6	36

#	Article	IF	CITATIONS
109	Part two: Analytical optimisation of a procedure for lead detection in milk by means of bismuth-modified screen-printed electrodes. Analytica Chimica Acta, 2012, 736, 92-99.	2.6	36
110	GlucoMen Day Continuous Glucose Monitoring System: A Screening for Enzymatic and Electrochemical Interferents. Journal of Diabetes Science and Technology, 2012, 6, 1172-1181.	1.3	35
111	Effect of photosynthesis on pH variation in cyanobacterial biofilms from Roman catacombs. Journal of Applied Phycology, 2000, 12, 379-384.	1.5	33
112	A challenge in biosensors: Is it better to measure a photon or an electron for ultrasensitive detection?. Biosensors and Bioelectronics, 2020, 155, 112093.	5.3	33
113	Prussian Blue Modified Carbon Nanotube Paste Electrodes: A Comparative Study and a Biochemical Application. Analytical Letters, 2003, 36, 1921-1938.	1.0	32
114	Quantitative, reagentless, single-step electrochemical detection of anti-DNA antibodies directly in blood serum. Chemical Communications, 2010, 46, 1742.	2.2	32
115	Analytical aspects of enzyme reversible inhibition. Talanta, 2014, 118, 368-374.	2.9	32
116	Origami Paper-Based Electrochemical (Bio)Sensors: State of the Art and Perspective. Biosensors, 2021, 11, 328.	2.3	32
117	Development of an Immunomagnetic Electrochemical Sensor for Detection of BT RY1AB/CRY1AC Proteins in Genetically Modified Corn Samples. Analytical Letters, 2006, 39, 1599-1609.	1.0	31
118	Disposable Electrochemical Sensor to Evaluate the Phytoremediation of the Aquatic Plant <i>Lemna minor</i> L. toward Pb ²⁺ and/or Cd ²⁺ . Environmental Science & Environmental Sci	4.6	31
119	Paper-based immunoassay based on 96-well wax-printed paper plate combined with magnetic beads and colorimetric smartphone-assisted measure for reliable detection of SARS-CoV-2 in saliva. Biosensors and Bioelectronics, 2022, 200, 113909.	5. 3	31
120	Ultrafiltrate sampling device for continuous monitoring. Medical and Biological Engineering and Computing, 1996, 34, 290-294.	1.6	30
121	A bienzyme electrochemical probe for flow injection analysis of okadaic acid based on protein phosphatase-2A inhibition: An optimization study. Analytical Biochemistry, 2009, 385, 50-56.	1.1	30
122	Development and Application of an Electrochemical Plate Coupled with Immunomagnetic Beads (ELIME) Array for Salmonella enterica Detection in Meat Samples. Journal of Agricultural and Food Chemistry, 2009, 57, 7200-7204.	2.4	30
123	Aflatoxin M1 determination and stability study in milk samples using a screen-printed 96-well electrochemical microplate. International Dairy Journal, 2009, 19, 753-758.	1.5	30
124	Carbon black nanoparticles to sense algae oxygen evolution for herbicides detection: Atrazine as a case study. Biosensors and Bioelectronics, 2020, 159, 112203.	5.3	30
125	AMPEROMETRIC DETECTION OF BIOGENIC AMINES IN CHEESE USING IMMOBILISED DIAMINE OXIDASE. Analytical Letters, 2001, 34, 841-854.	1.0	29
126	Nonconducting polymers on Prussian Blue modified electrodes: improvement of selectivity and stability of the advanced H/sub 2/O/sub 2/ transducer. IEEE Sensors Journal, 2003, 3, 326-332.	2.4	29

#	Article	IF	CITATIONS
127	Carbon black-based disposable sensor for an on-site detection of free chlorine in swimming pool water. Talanta, 2018, 189, 262-267.	2.9	29
128	Electrochemical determination of capsaicin in pepper samples using sustainable paper-based screen-printed bulk modified with carbon black. Electrochimica Acta, 2020, 354, 136628.	2.6	29
129	All-solid state ion-selective carbon black-modified printed electrode for sodium detection in sweat. Electrochimica Acta, 2021, 394, 139050.	2.6	29
130	A paper-based electrochemical device for the detection of pesticides in aerosol phase inspired by nature: A flower-like origami biosensor for precision agriculture. Biosensors and Bioelectronics, 2022, 205, 114119.	5. 3	29
131	Amperometric lysine bioprobes analysis in feeds. Talanta, 1993, 40, 1301-1306.	2.9	28
132	Detection of Biogenic Amines in Human Saliva Using a Screen-Printed Biosensor. Analytical Letters, 2010, 43, 1310-1316.	1.0	28
133	A lab-on-a-tip approach to make electroanalysis user-friendly and de-centralized: Detection of copper ions in river water. Analytica Chimica Acta, 2018, 1029, 1-7.	2.6	28
134	In vivo continuous monitoring of L-lactate coupling subcutaneous microdialysis and an electrochemical biocell. Sensors and Actuators B: Chemical, 1995, 24, 138-141.	4.0	27
135	Synthesis and characterization of polymeric films and nanotubule nets used to assemble selective sensors for nitrite detection in drinking water. Sensors and Actuators B: Chemical, 2007, 122, 236-242.	4.0	27
136	Effect of Different Carbon Blacks on the Simultaneous Electroanalysis of Drugs as Water Contaminants Based on Screenâ€printed Sensors. Electroanalysis, 2019, 31, 2145-2154.	1.5	27
137	Rapid and Selective Electrochemical Determination of Nitrite in Cured Meat in the Presence of Ascorbic Acid. Mikrochimica Acta, 2004, 147, 51.	2.5	26
138	Rapid and label-free detection of ochratoxin A and aflatoxin B1 using an optical portable instrument. Talanta, 2016, 150, 440-448.	2.9	26
139	Development of SYBRâ€Green Realâ€Time PCR and a Multichannel Electrochemical Immunosensor for Specific Detection ofSalmonella enterica. Analytical Letters, 2006, 39, 1611-1625.	1.0	25
140	Rapid Screening Electrochemical Methods for Aflatoxin Bland Typeâ€A Trichothecenes: A Preliminary Study. Analytical Letters, 2007, 40, 1333-1346.	1.0	25
141	Automatable Flow System for Paraoxon Detection with an Embedded Screen-Printed Electrode Tailored with Butyrylcholinesterase and Prussian Blue Nanoparticles. Chemosensors, 2015, 3, 129-145.	1.8	25
142	Paper-Based Electrochemical Devices in Biomedical Field. Comprehensive Analytical Chemistry, 2017, 77, 385-413.	0.7	25
143	Sustainable materials for the design of forefront printed (bio)sensors applied in agrifood sector. TrAC - Trends in Analytical Chemistry, 2020, 128, 115909.	5.8	25
144	Reusable optical multi-plate sensing system for pesticide detection by using electrospun membranes as smart support for acetylcholinesterase immobilisation. Materials Science and Engineering C, 2020, 111, 110744.	3.8	24

#	Article	IF	Citations
145	Networks based on chitosan and oxidized cyclodextrinâ€"II. Structural and catalytic features of a copper (II)-loaded network. Polymer Gels and Networks, 1998, 5, 525-540.	0.6	23
146	Towards a Portable Prototype Based on Electrochemical Cholinesterase Biosensor to be Assembled to Soldier Overall for Nerve Agent Detection. Electroanalysis, 2012, 24, 581-590.	1.5	23
147	A paper-based electrochemical sensor for H2O2 detection in aerosol phase: Measure of H2O2 nebulized by a reconverted ultrasonic aroma diffuser as a case of study. Microchemical Journal, 2021, 166, 106249.	2.3	23
148	An electrochemical immunoassay for the screening of celiac disease in saliva samples. Analytical and Bioanalytical Chemistry, 2015, 407, 7189-7196.	1.9	22
149	Smartphone-assisted electrochemical sensor for reliable detection of tyrosine in serum. Talanta, 2022, 237, 122869.	2.9	22
150	A 96-well wax printed Prussian Blue paper for the visual determination of cholinesterase activity in human serum. Biosensors and Bioelectronics, 2019, 134, 97-102.	5.3	21
151	An ELIME assay for the rapid diagnosis of coeliac disease. Analytical and Bioanalytical Chemistry, 2012, 403, 1191-1194.	1.9	20
152	In vivo continuous monitoring of glucose by microdialysis and a glucose biosensor. Sensors and Actuators B: Chemical, 1992, 6, 143-145.	4.0	19
153	Development and Comparative Evaluation of Different Screening Methods for Detection of Staphylococcus aureus. Analytical Letters, 2005, 38, 1569-1586.	1.0	19
154	Ex Vivo Continuous Glucose Monitoring With Microdialysis Technique: The Example of GlucoDay. IEEE Sensors Journal, 2008, 8, 63-70.	2.4	19
155	Paper-Based Electrochemical Devices for the Pharmaceutical Field: State of the Art and Perspectives. Frontiers in Bioengineering and Biotechnology, 2020, 8, 339.	2.0	19
156	In-line determination of metabolites and milk components with electrochemical biosensors. Analytica Chimica Acta, 1988, 213, 101-111.	2.6	18
157	Determination of superoxide dismutase activity with an electrochemical oxygen probe. Analytica Chimica Acta, 1988, 211, 195-204.	2.6	18
158	Rapid Determination of Lactulose in Milk Using Seliwanoff's Reaction. Analytical Letters, 2000, 33, 125-135.	1.0	18
159	Novel bio-lab-on-a-tip for electrochemical glucose sensing in commercial beverages. Biosensors and Bioelectronics, 2020, 165, 112334.	5.3	18
160	A miniaturized bismuth-based sensor to evaluate the marine organism Styela plicata bioremediation capacity toward heavy metal polluted seawater. Science of the Total Environment, 2017, 584-585, 692-700.	3.9	17
161	Nanomaterial-based sensors., 2020,, 329-359.		17
162	Direct electrochemical detection of trichothecenes in wheat samples using a 96-well electrochemical plate coupled with microwave hydrolysis. World Mycotoxin Journal, 2009, 2, 239-245.	0.8	16

#	Article	IF	CITATIONS
163	Flow-Injection Analysis of Residual Glucose in Wines Using a Semiautomatic Analyzer Equipped with a Prussian Blue-Based Biosensor. Electroanalysis, 2003, 15, 447-451.	1.5	15
164	Acoustic love-wave sensor for K+ concentration in H2O solutions. Sensors and Actuators B: Chemical, 1992, 7, 602-605.	4.0	14
165	A whole cell optical bioassay for the detection of chemical warfare mustard agent simulants. Sensors and Actuators B: Chemical, 2018, 257, 658-665.	4.0	14
166	Paper-based electrochemical sensor for on-site detection of the sulphur mustard. Environmental Science and Pollution Research, 2021, 28, 25069-25080.	2.7	14
167	Multi-array wax paper-based platform for the pre-concentration and determination of silver ions in drinking water. Talanta, 2021, 232, 122474.	2.9	14
168	A Choline Oxidase Amperometric Bioassay for the Detection of Mustard Agents Based on Screen-Printed Electrodes Modified with Prussian Blue Nanoparticles. Sensors, 2015, 15, 4353-4367.	2.1	13
169	Construction, assembling and application of a trehalase–GOD enzyme electrode system. Biosensors and Bioelectronics, 2009, 24, 1382-1388.	5. 3	12
170	Sensing the Lactic Acid in Probiotic Yogurts Using an L-Lactate Biosensor Coupled with a Microdialysis Fiber Inserted in a Flow Analysis System. Analytical Letters, 2010, 43, 1301-1309.	1.0	12
171	Towards the development of a single-step immunosensor based on an electrochemical screen-printed electrode strip coupled with immunomagnetic beads. Analytical and Bioanalytical Chemistry, 2013, 405, 655-663.	1.9	12
172	Commercially Available (Bio)sensors in the Agrifood Sector. Comprehensive Analytical Chemistry, 2016, 74, 315-340.	0.7	12
173	Organophosphorous Pesticide Detection in Olive Oil by Using a Miniaturized, Easy-to-Use, and Cost-Effective Biosensor Combined with QuEChERS for Sample Clean-Up. Sensors, 2017, 17, 34.	2.1	12
174	A Rapid Enzymatic Method for Aflatoxin B Detection. Methods in Molecular Biology, 2011, 739, 217-235.	0.4	12
175	Determination of serum cholinesterase activity and dibucaine numbers by an amperometric choline sensor. Biosensors and Bioelectronics, 1990, 5, 27-35.	5. 3	11
176	A Miniaturized Carbon Blackâ€based Electrochemical Sensor for Chlorine Dioxide Detection in Swimming Pool Water. Electroanalysis, 2020, 32, 986-991.	1.5	11
177	State of the Art on the SARS-CoV-2 Toolkit for Antigen Detection: One Year Later. Biosensors, 2021, 11, 310.	2.3	11
178	Effects of Humidity, Temperature and Bismuth Electrodeposition on Electroanalytical Performances of Nafionâ€coated Printed Electrodes for Cd ²⁺ and Pb ²⁺ Detection. Electroanalysis, 2020, 32, 345-357.	1.5	10
179	Paper-based devices as new smart analytical tools for sustainable detection of environmental pollutants. Case Studies in Chemical and Environmental Engineering, 2021, 4, 100167.	2.9	10
180	Development and Application of a Two-Phase Clean-Up System in Food Samples Prior to Fluorescence Analysis of Aflatoxins. Mikrochimica Acta, 2006, 153, 101-108.	2.5	9

#	Article	IF	Citations
181	AFB1–AP Conjugate for Enzyme Immunoassay of Aflatoxin B1in Corn Samples. Analytical Letters, 2009, 42, 1170-1186.	1.0	9
182	Engineering DNAâ€Grafted Quatsomes as Stable Nucleic Acidâ€Responsive Fluorescent Nanovesicles. Advanced Functional Materials, 2021, 31, 2103511.	7.8	9
183	A fully-printed electrochemical platform for assisted colorimetric detection of phosphate in saliva: Greenness and whiteness quantification by the AGREE and RGB tools. , 2022, 1, 100006.		9
184	Flow monitoring of glutamate and aspartate in foods and pharmaceutical products with immobilized bienzyme electrochemical cells. Electroanalysis, 1992, 4, 851-857.	1.5	8
185	Treated Gold Screen-Printed Electrode as Disposable Platform for Label-Free Immunosensing of Salmonella Typhimurium. Electrocatalysis, 2019, 10, 288-294.	1.5	8
186	A Poly(Propylene Imine) Dendrimer and Carbon Black Modified Flexible Screen Printed Electrochemical Sensor for Lead and Cadmium Coâ€detection. Electroanalysis, 2020, 32, 3009-3016.	1.5	8
187	Development of novel carbon black-based heterogeneous oligonucleotide-antibody assay for sulfur mustard detection. Sensors and Actuators B: Chemical, 2021, 328, 129054.	4.0	8
188	Investigation of glycated protein assay for assessing heat treatment effect in food samples and protein–sugar models. Food Chemistry, 2006, 96, 485-490.	4.2	6
189	Development of a Very Sensitive ELIME Assay for Detection of slgE to G5 and D2 Aeroallergens in Serum Samples. Electroanalysis, 2014, 26, 1382-1389.	1.5	6
190	Electrochemical Biosensors for Chemical Warfare Agents. Advanced Sciences and Technologies for Security Applications, 2016, , 115-139.	0.4	6
191	Carbon-black combined with TiO2 and KuQ as sustainable photosystem for a reliable self-powered photoelectrochemical biosensor. Electrochimica Acta, 2022, 426, 140766.	2.6	6
192	Extracorporeal determination of glucose, lactate and potassium with electrochemical biosensors. Journal of Pharmaceutical and Biomedical Analysis, 1989, 7, 1377-1383.	1.4	5
193	Amperometric Alanine Electrode. Analytical Letters, 1993, 26, 1301-1319.	1.0	5
194	Determination of Damaged Starch in Wheat Flour Using an Electrochemical Bienzyme Maltose Probe. Analytical Letters, 1998, 31, 733-749.	1.0	5
195	Efforts, Challenges, and Future Perspectives of Graphene-Based (Bio)sensors for Biomedical Applications., 2018, , 133-150.		5
196	An ELIME assay for hepatitis A virus detection. Talanta, 2021, 234, 122672.	2.9	5
197	Realâ€Time Monitoring of Hydrogen Peroxide Consumption in an Oxidation Reaction in Molecular Solvent and Ionic Liquids by a Hydrogen Peroxide Electrochemical Sensor. ChemSusChem, 2011, 4, 792-796.	3.6	4
198	Towards an Immunoanalytical Systems for Hepatitis a Virus Determination. Procedia Technology, 2017, 27, 85-86.	1.1	4

#	Article	IF	CITATIONS
199	Chapter 24 Mediated enzyme screen-printed electrode probes for clinical, environmental and food analysis. Comprehensive Analytical Chemistry, 2007, 49, 559-584.	0.7	3
200	ELIME (Enzyme Linked Immuno Magnetic Electrochemical) Method for Mycotoxin Detection. Journal of Visualized Experiments, 2009, , .	0.2	3
201	How to extend range linearity in enzyme inhibition-based biosensing assays. Talanta, 2018, 189, 365-369.	2.9	3
202	Multifarious aspects of electrochemical paper-based (bio)sensors. Comprehensive Analytical Chemistry, 2020, , 139-161.	0.7	3
203	Electrochemical biosensors for extracorporeal measurements. Biochemical Society Transactions, 1991, 19, 5-9.	1.6	2
204	Carbon Black/Gold Nanoparticles Composite for Efficient Amperometric Sensors. Lecture Notes in Electrical Engineering, 2015, , 159-163.	0.3	2
205	NEW ELECTROCHEMICAL SENSORS FOR NITRITES AND NITRATES DETERMINATION IN DRINKING WATERS. , 2000, , .		2
206	On-line determination of glucose produced by hydrolysis of cellobiose realized with a cellular bioreactor. Biotechnology and Bioengineering, 1989, 34, 262-264.	1.7	1
207	Chapter 12 Coupling of microdialysis sampling with biosensing detection modes. Comprehensive Analytical Chemistry, 2005, 44, 579-626.	0.7	1
208	Development of Sensors to Trace Toxins from Dinoflagellates and Other Algae to Seafood. NATO Science for Peace and Security Series A: Chemistry and Biology, 2008, , 301-310.	0.5	1
209	Screen-printed electrodes as versatile electrochemical sensors and biosensors., 2017,,.		1
210	Fast Amperometric Determination of Enzymatic Activity of Glutaminase. Analytical Letters, 2000, 33, 615-627.	1.0	0
211	Procedure 17 Preparation of Prussian blue-modified screen-printed electrodes via a chemical deposition for mass production of stable hydrogen peroxide sensors. Comprehensive Analytical Chemistry, 2007, , e119-e124.	0.7	0
212	Screen-printed electrode modified with the carbon black nanoparticles as a cost-effective and sensitive sensor for phosphate detection. , 2015 , , .		0
213	Liquid Biopsy beyond Cancer: A miRNA Detection in Serum with Electrochemical Chip for Nonâ€Invasive Coeliac Disease Diagnosis. Advanced NanoBiomed Research, 0, , 2200015.	1.7	0