Dong Jin Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000404/publications.pdf

Version: 2024-02-01

		304602	345118
38	1,273	22	36
papers	citations	h-index	g-index
39	39	39	1999
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Large-Scale Synthesis of Hybrid Conductive Polymer–Gold Nanoparticles Using "Sacrificial―Weakly Binding Ligands for Printing Electronics. Inorganic Chemistry, 2021, 60, 17103-17113.	1.9	8
2	Highâ€Resolution Inkjet Printing of Quantum Dot Lightâ€Emitting Microdiode Arrays. Advanced Optical Materials, 2020, 8, 1901429.	3.6	145
3	Reversible Conductive Inkjet Printing of Healable and Recyclable Electrodes on Cardboard and Paper. Small, 2020, 16, e2000928.	5. 2	11
4	Programmable soft robotics based on nano-textured thermo-responsive actuators. Nanoscale, 2019, 11, 2065-2070.	2.8	29
5	Nanoparticle synthesis <i>via</i> bubbling vapor precursors in bulk liquids. Nanoscale, 2018, 10, 12196-12203.	2.8	2
6	Synthesizing Pickering Nanoemulsions by Vapor Condensation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 21746-21754.	4.0	34
7	A blister-like soft nano-textured thermo-pneumatic actuator as an artificial muscle. Nanoscale, 2018, 10, 16591-16600.	2.8	26
8	Surface Engineering of Graphene Quantum Dots and Their Applications as Efficient Surfactants. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8615-8621.	4.0	76
9	Enhancing Mechanical Properties of Highly Efficient Polymer Solar Cells Using Size-Tuned Polymer Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2668-2676.	4.0	16
10	Synthesis of biodegradable and flexible, polylactic acid based, thermoplastic polyurethane with high gas barrier properties. Polymer International, 2014, 63, 1620-1626.	1.6	27
11	Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer. Advanced Energy Materials, 2014, 4, 1301345.	10.2	19
12	Au@Polymer Core–Shell Nanoparticles for Simultaneously Enhancing Efficiency and Ambient Stability of Organic Optoelectronic Devices. ACS Applied Materials & Enterfaces, 2014, 6, 16956-16965.	4.0	71
13	Highly Luminescent Polymer Particles Driven by Thermally Reduced Graphene Quantum Dot Surfactants. ACS Macro Letters, 2014, 3, 985-990.	2.3	42
14	Aspect-Ratio Effect of Nanorod Compatibilizers in Conducting Polymer Blends. ACS Macro Letters, 2014, 3, 398-404.	2.3	19
15	Lightâ€Emitting Diodes: Simultaneously Enhancing Light Extraction and Device Stability of Organic Lightâ€Emitting Diodes using a Corrugated Polymer Nanosphere Templated PEDOT:PSS Layer (Adv. Energy) Tj	ETQ φΦ.2 Ο.	78 4 314 rgBT
16	Influence of intermolecular interactions of electron donating small molecules on their molecular packing and performance in organic electronic devices. Journal of Materials Chemistry A, 2013, 1, 14538.	5.2	86
17	Efficient light trapping in inverted polymer solar cells by a randomly nanostructured electrode using monodispersed polymer nanoparticles. Nanoscale, 2013, 5, 1858.	2.8	22
18	Nanosphere Templated Continuous PEDOT:PSS Films with Low Percolation Threshold for Application in Efficient Polymer Solar Cells. ACS Nano, 2012, 6, 7902-7909.	7.3	30

#	Article	IF	Citations
19	Gold-Decorated Block Copolymer Microspheres with Controlled Surface Nanostructures. ACS Nano, 2012, 6, 2750-2757.	7.3	72
20	Effects of Pristine and Metal MWCNTs on Crystalline Structure of PLA/ABS Blends: Morphology and Electrical Conductivity. Advanced Science Letters, 2012, 18, 114-120.	0.2	0
21	Creating Opal-Templated Continuous Conducting Polymer Films with Ultralow Percolation Thresholds Using Thermally Stable Nanoparticles. ACS Nano, 2011, 5, 9017-9027.	7.3	30
22	Size-Controlled Polymer-Coated Nanoparticles as Efficient Compatibilizers for Polymer Blends. Macromolecules, 2011, 44, 9852-9862.	2.2	66
23	Microstructural investigations of zirconium oxideâ€"on coreâ€"shell structure of carbon nanotubes. Journal of Nanoparticle Research, 2011, 13, 2597-2607.	0.8	12
24	Synergistic effect on crystalline structure of polyvinylidene fluoride nanocomposites with multiwalled carbon nanotube loading by a twin screw extruder. Journal of Applied Polymer Science, 2011, 121, 226-233.	1.3	10
25	Effect of fillers and nitrile blended PVC on natural rubber/high styrene rubber with nanosilica blends: Morphology and wear. Materials & Design, 2010, 31, 25-34.	5.1	27
26	Effect of fillers on natural rubber/high styrene rubber blends with nano silica: Morphology and wear. Materials & Design, 2010, 31, 677-686.	5.1	102
27	Influence of carbon blacks on butadiene rubber/high styrene rubber/natural rubber with nanosilica: Morphology and wear. Materials & Design, 2010, 31, 1156-1164.	5.1	25
28	Effect of eggshell and silk fibroin on styrene–ethylene/butylene–styrene as bio-filler. Materials & Design, 2010, 31, 2216-2219.	5.1	50
29	Effect of Filler and Urethane Rubber on NR/BR with Nanosilica: Morphology and Wear. Journal of Thermoplastic Composite Materials, 2010, 23, 717-739.	2.6	13
30	Synergistic Effects of Zirconia-Coated Carbon Nanotube on Crystalline Structure of Polyvinylidene Fluoride Nanocomposites: Electrical Properties and Flame-Retardant Behavior. Langmuir, 2010, 26, 3609-3614.	1.6	43
31	Effects of waste ground rubber tire powder (WGRT) and chemical blowing agent content on the cell morphology and physicomechanical properties of injectionâ€molded polypropylene/WGRT foams. Journal of Vinyl and Additive Technology, 2009, 15, 275-280.	1.8	9
32	Effect of fillers on morphological properties in NR/SBR blends for OTR tyres. Plastics, Rubber and Composites, 2009, 38, 302-308.	0.9	4
33	Microcellular Structure of PP/Waste Rubber Powder Blends with Supercritical CO ₂ by Foam Extrusion Process. Journal of Cellular Plastics, 2009, 45, 499-514.	1.2	23
34	Wellâ€Controlled Microcellular Biodegradable PLA/Silk Composite Foams Using Supercritical CO ₂ . Macromolecular Materials and Engineering, 2009, 294, 620-624.	1.7	32
35	Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder. Waste Management, 2009, 29, 1058-1066.	3.7	33
36	Effect of epoxidized natural rubber–organoclay nanocomposites on NR/high styrene rubber blends with fillers. Materials & Design, 2009, 30, 4035-4042.	5.1	36

#	Article	IF	CITATIONS
37	Microcellular foams of thermoplastic vulcanizates (TPVs) based on waste ground rubber tire powder. Materials Letters, 2008, 62, 4396-4399.	1.3	21
38	Preparation and characterization of thermoplastic elastomers (TPEs) based on waste polypropylene and waste ground rubber tire powder. E-Polymers, 2008, 8, .	1.3	2