Dietmar Krautwurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The key food odorant receptive range of broadly tuned receptor OR2W1. Food Chemistry, 2022, 375, 131680.	4.2	14
2	Olfaction and the complex interaction between odourant ligands and their receptors. Comprehensive Analytical Chemistry, 2022, , 1-40.	0.7	0
3	Conserved Câ€ŧerminal motifs in odorant receptors instruct their cell surface expression and cAMP signaling. FASEB Journal, 2021, 35, e21274.	0.2	5
4	An evolutionary conserved olfactory receptor for foodborne and semiochemical alkylpyrazines. FASEB Journal, 2021, 35, e21638.	0.2	14
5	Key Food Furanones Furaneol and Sotolone Specifically Activate Distinct Odorant Receptors. Journal of Agricultural and Food Chemistry, 2021, 69, 10999-11005.	2.4	17
6	Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3. Cellular and Molecular Life Sciences, 2020, 77, 2157-2179.	2.4	29
7	Toward the Digitalization of Olfaction. , 2020, , 758-768.		6
8	Beyond the Flavour: The Potential Druggability of Chemosensory G Protein-Coupled Receptors. International Journal of Molecular Sciences, 2019, 20, 1402.	1.8	53
9	Food sources and biomolecular targets of tyramine. Nutrition Reviews, 2019, 77, 107-115.	2.6	42
10	"Hidden Scents – The Language of Smell in the Age of Approximation― Chemical Senses, 2018, 43, 135-1	.36 . .1	0
11	Current Status and Future Perspectives in Flavor Research: Highlights of the 11th Wartburg Symposium on Flavor Chemistry & Biology. Journal of Agricultural and Food Chemistry, 2018, 66, 2197-2203.	2.4	24
12	The Broadly Tuned Odorant Receptor OR1A1 is Highly Selective for 3-Methyl-2,4-nonanedione, a Key Food Odorant in Aged Wines, Tea, and Other Foods. Chemical Senses, 2017, 42, 181-193.	1.1	56
13	OR2M3: A Highly Specific and Narrowly Tuned Human Odorant Receptor for the Sensitive Detection of Onion Key Food Odorant 3-Mercapto-2-methylpentan-1-ol. Chemical Senses, 2017, 42, 195-210.	1.1	44
14	Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cellular and Molecular Life Sciences, 2017, 74, 4209-4229.	2.4	46
15	IL-6. Journal of Biological Methods, 2017, 4, e81.	1.0	21
16	A bi-functional IL-6-HaloTag® as a tool to measure the cell-surface expression of recombinant odorant receptors and to facilitate their activity quantification. Journal of Biological Methods, 2017, 4, e82.	1.0	13
17	Chemosensory G Protein-Coupled Receptors (GPCR) in Blood Leukocytes. Topics in Medicinal Chemistry, 2016, , 151-173.	0.4	2
18	A Review of Michael Stoddart. Chemical Senses, 2016, 41, 473-474.	1.1	0

2

DIETMAR KRAUTWURST

#	Article	IF	CITATIONS
19	TRPC6 G757D Loss-of-Function Mutation Associates with FSGS. Journal of the American Society of Nephrology: JASN, 2016, 27, 2771-2783.	3.0	94
20	Chirality Matters – Enantioselective Orthologous Odorant Receptors for Related Terpenoid Structures. ACS Symposium Series, 2015, , 161-181.	0.5	6
21	Class I odorant receptors, TAS1R and TAS2R taste receptors, are markers for subpopulations of circulating leukocytes. Journal of Leukocyte Biology, 2015, 97, 533-545.	1.5	122
22	A Butter Aroma Recombinate Activates Human Class-I Odorant Receptors. Journal of Agricultural and Food Chemistry, 2015, 63, 9410-9420.	2.4	43
23	Nature's Chemical Signatures in Human Olfaction: A Foodborne Perspective for Future Biotechnology. Angewandte Chemie - International Edition, 2014, 53, 7124-7143.	7.2	409
24	Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2. Journal of Leukocyte Biology, 2013, 93, 387-394.	1.5	102
25	A Hit Map-Based Statistical Method to Predict Best Ligands for Orphan Olfactory Receptors: Natural Key Odorants Versus "Lock Picks― Methods in Molecular Biology, 2013, 1003, 85-97.	0.4	19
26	Fenamates as TRP channel blockers: mefenamic acid selectively blocks TRPM3. British Journal of Pharmacology, 2011, 162, 1757-1769.	2.7	94
27	Synthetic Modulators of TRP Channel Activity. Advances in Experimental Medicine and Biology, 2011, 704, 87-106.	0.8	27
28	Human Olfactory Receptor Families and Their Odorants. Chemistry and Biodiversity, 2008, 5, 842-852.	1.0	37
29	The human vomeronasal typeâ€l receptor family—detection of volatiles and cAMP signaling in HeLa/Olf cells. FASEB Journal, 2008, 22, 1416-1425.	0.2	39
30	Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. Journal of Structural Biology, 2007, 159, 400-412.	1.3	139
31	Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17079-17086.	3.3	262
32	Receptor-induced Activation of Drosophila TRPÎ ³ by Polyunsaturated Fatty Acids. Journal of Biological Chemistry, 2006, 281, 29693-29702.	1.6	26
33	Identification of Specific Ligands for Orphan Olfactory Receptors. Journal of Biological Chemistry, 2005, 280, 11807-11815.	1.6	141
34	Identification of Human Bitter Taste Receptors. ACS Symposium Series, 2003, , 45-59.	0.5	3
35	The human TAS2R16 receptor mediates bitter taste in response to Î ² -glucopyranosides. Nature Genetics, 2002, 32, 397-401.	9.4	400
36	Identification of Ligands for Olfactory Receptors by Functional Expression of a Receptor Library. Cell, 1998, 95, 917-926.	13.5	566

3

#	Article	IF	CITATIONS
37	Concanavalin A and mistletoe lectin I differentially activate cation entry and exocytosis in human neutrophils: lectins may activate multiple subtypes of cation channels. Journal of Leukocyte Biology, 1996, 60, 345-355.	1.5	12
38	Thapsigargin activates univalent- and bivalent-cation entry in human neutrophils by a SK&F I3 96365- and Gd3+-sensitive pathway and is a partial secretagogue: involvement of pertussis-toxin-sensitive G-proteins and protein phosphatases 1/2A and 2B in the signal-transduction pathway. Biochemical Journal, 1996, 314, 679-686.	1.7	28