William J Roesler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4000118/publications.pdf

Version: 2024-02-01

42 papers

1,680 citations

304743 22 h-index 289244 40 g-index

42 all docs 42 docs citations

42 times ranked 1884 citing authors

#	Article	IF	CITATIONS
1	A Progressive Loss of phosphoSer138-Profilin Aligns with Symptomatic Course in the R6/2 Mouse Model of Huntington's Disease: Possible Sex-Dependent Signaling. Cellular and Molecular Neurobiology, 2022, 42, 871-888.	3.3	2
2	Responsive eLearning exercises to enhance student interaction with metabolic pathways. Biochemistry and Molecular Biology Education, 2018, 46, 223-229.	1.2	4
3	The Glutamine-Alanine Repeat Domain of TCERG1 is Required for the Inhibition of the Growth Arrest Activity of C/EBPα. Journal of Cellular Biochemistry, 2016, 117, 612-620.	2.6	3
4	Stable expression of barley \hat{l}_{\pm} -amylase in S. cerevisiae for conversion of starch into bioethanol. Biochemical Engineering Journal, 2012, 64, 8-16.	3.6	19
5	TCERG1 inhibits C/EBPα through a mechanism that does not involve sequestration of C/EBPα at pericentromeric heterochromatin. Journal of Cellular Biochemistry, 2011, 112, 2317-2326.	2.6	3
6	Nuclear redistribution of TCERG1 is required for its ability to inhibit the transcriptional and antiâ€proliferative activities of C/EBPα. Journal of Cellular Biochemistry, 2010, 109, 140-151.	2.6	3
7	Amylolytic activity and fermentative ability of Saccharomyces cerevisiae strains that express barley α-amylase. Biochemical Engineering Journal, 2010, 53, 63-70.	3.6	7
8	Identification of a Co-repressor That Inhibits the Transcriptional and Growth-Arrest Activities of CCAAT/Enhancer-binding Protein \hat{l}_{\pm} . Journal of Biological Chemistry, 2006, 281, 18069-18080.	3.4	19
9	Troglitazone overcomes doxorubicin-resistance in resistant K562 leukemia cells. Leukemia and Lymphoma, 2005, 46, 1199-1206.	1.3	26
10	Effect of overexpression and nuclear translocation of constitutively active PKB-? on cellular survival and proliferation in HepG2 cells. Journal of Cellular Biochemistry, 2004, 93, 513-525.	2.6	25
11	Troglitazone reduces heat shock protein 70 content in primary rat hepatocytes by a ubiquitin proteasome independent mechanism. Pharmacological Research, 2003, 48, 119-119.	7.1	2
12	Troglitazone reduces heat shock protein 70 content in primary rat hepatocytes by a ubiquitin proteasome independent mechanism. Pharmacological Research, 2003, 48, 119-26.	7.1	4
13	Unique Ability of Troglitazone to Up-Regulate Peroxisome Proliferator-Activated Receptor-Î ³ Expression in Hepatocytes. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 72-77.	2.5	61
14	Different Transcription Factor Binding Arrays Modulate the cAMP Responsivity of the Phosphoenolpyruvate Carboxykinase Gene Promoter. Journal of Biological Chemistry, 2002, 277, 43895-43902.	3.4	16
15	Conserved Amino Acids within CCAAT Enhancer-binding Proteins (C/EBPÎ \pm and Î 2) Regulate Phosphoenolpyruvate Carboxykinase (PEPCK) Gene Expression. Journal of Biological Chemistry, 2002, 277, 27606-27612.	3.4	36
16	CCAAT/enhancer binding proteins: do they possess intrinsic cAMP-inducible activity?. Molecular and Cellular Endocrinology, 2002, 188, 15-20.	3.2	42
17	Characterization of domains in C/EBPα that mediate its constitutive and cAMP-inducible activities. Molecular and Cellular Endocrinology, 2001, 181, 27-34.	3.2	16
18	C/EBPα Arrests Cell Proliferation through Direct Inhibition of Cdk2 and Cdk4. Molecular Cell, 2001, 8, 817-828.	9.7	312

#	ARTICLE IIIIIIIIIIIIIII of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: a	IF	Citations
19	peroxisome proliferator-activated receptor-l³ (PPARl³)-independent, antioxidant-related mechanism11Abbreviations: BADGE, bisphenol A diglycidyl ether; DCF, dichlorofluorescein; DCFH, 5- (and 6-)carboxy-2′,7′-dichlorodihydrofluorescein; PEPCK, phosphoenolpyruvate carboxykinase; 15-PGJ2, 15-deoxy-l"12,14-prostaglandin J2; PPAR, peroxisome proliferator-activated receptor; RPPO, ribosomal	4.4	101
20	phosphoprotein PO: TZD. thiazolidine. Biochemical Pharmacology. 2001. 62. 1071-1079. THEROLE OFC/EBPINNUTRIENT ANDHORMONALREGULATION OFGENEEXPRESSION. Annual Review of Nutrition, 2001, 21, 141-165.	10.1	81
21	Hormonal Regulation of the Phosphoenolpyruvate Carboxykinase Gene. Journal of Biological Chemistry, 2000, 275, 5804-5809.	3.4	34
22	At the Cutting Edge What is a cAMP response unit?. Molecular and Cellular Endocrinology, 2000, 162, 1-7.	3.2	77
23	Role of CCAAT Enhancer-binding Protein \hat{l}^2 in the Thyroid Hormone and cAMP Induction of Phosphoenolpyruvate Carboxykinase Gene Transcription. Journal of Biological Chemistry, 1999, 274, 211-217.	3.4	61
24	Troglitazone inhibits expression of the phosphoenolpyruvate carboxykinase gene by an insulin-independent mechanism. Biochimica Et Biophysica Acta - Molecular Cell Research, 1999, 1451, 122-131.	4.1	34
25	M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire. Journal of Molecular Biology, 1999, 294, 477-485.	4.2	220
26	Troglitazone Induces Expression of PPARγ in Liver. Molecular Cell Biology Research Communications: MCBRC: Part B of Biochemical and Biophysical Research Communications, 1999, 2, 202-208.	1.6	26
27	Hormone response units: one plus one equals more than two. , 1998, 178, 1-8.		14
28	Nuclear Factor I Regulates Expression of the Gene for Phosphoenolpyruvate Carboxykinase (GTP). Journal of Biological Chemistry, 1998, 273, 13387-13390.	3.4	24
29	Insulin Stimulates cAMP-response Element Binding Protein Activity in HepG2 and 3T3-L1 Cell Lines. Journal of Biological Chemistry, 1998, 273, 917-923.	3.4	81
30	Characterization of CCAAT/Enhancer-binding Protein \hat{l}_{\pm} as a Cyclic AMP-responsive Nuclear Regulator. Journal of Biological Chemistry, 1998, 273, 14950-14957.	3.4	55
31	CCAAT-enhancer-binding protein \hat{l}_{\pm} (C/EBP \hat{l}_{\pm}) is required for the thyroid hormone but not the retinoic acid induction of phosphoenolpyruvate carboxykinase (PEPCK) gene transcription. Biochemical Journal, 1997, 322, 343-349.	3.7	43
32	Cyclic AMP-Stimulated Accumulation of the cAMP Response Element Binding Protein Can Occur without Changes in Gene Expression. Biochemical and Biophysical Research Communications, 1996, 227, 915-920.	2.1	5
33	The α-Isoform of the CCAAT/Enhancer-binding Protein Is Required for Mediating cAMP Responsiveness of the Phosphoenolpyruvate Carboxykinase Promoter in Hepatoma Cells. Journal of Biological Chemistry, 1996, 271, 8068-8074.	3.4	58
34	The cAMP Response Element Binding Protein Synergizes with Other Transcription Factors to Mediate cAMP Responsiveness. Journal of Biological Chemistry, 1995, 270, 8225-8232.	3.4	78
35	The Phosphorylation State of the cAMP Response Element Binding Protein Is Decreased in Diabetic Rat Liver. Archives of Biochemistry and Biophysics, 1995, 323, 477-483.	3.0	13
36	Hepatic glycogen metabolism in the db/db mouse. Molecular and Cellular Biochemistry, 1990, 92, 99-106.	3.1	26

#	Article	IF	CITATIONS
37	Modulation of hormone response elements by promoter environment. Trends in Endocrinology and Metabolism, 1990, 1, 347-351.	7.1	7
38	The rate of degradation of liver glycogen phosphorylase is specifically decreased in the C57BL/KsJ? db/db mouse. Molecular and Cellular Biochemistry, 1989, 87, 147-52.	3.1	7
39	Age-related changes in hepatic malic enzyme activity and plasma thyroid hormone levels in the genetically diabetic (db/db) mouse. Biochemical Society Transactions, 1988, 16, 31-32.	3.4	1
40	Hormonal regulation of malic enzyme and glucose-6-phosphate dehydrogenase in adult rat liver. Biochemical Society Transactions, 1988, 16, 33-34.	3.4	0
41	Quantitation of glycogen synthase and phosphorylase protein in mouse liver: Correlation between enzymatic protein and enzyme activity. Archives of Biochemistry and Biophysics, 1986, 244, 397-407.	3.0	29
42	The diurnal rhythm of liver glycogen phosphorylase: correlating changes in enzyme activity and enzymic protein. FEBS Letters, 1986, 195, 344-346.	2.8	5