
Yiyang Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/400002/publications.pdf Version: 2024-02-01

ΥΙΧΑΝΟ ΖΗΠΑΝΟ

#	Article	IF	CITATIONS
1	2-D Tilt Sensor Based on Coaxial Cable Fabry–Perot Resonators With Submicroradian Resolution. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 2398-2406.	4.6	10
2	Distributed fiber optic sensing with enhanced sensitivity based on microwave-photonic Vernier effect. Optics Letters, 2022, 47, 2810.	3.3	13
3	Fiber optic sensor embedded smart helmet for real-time impact sensing and analysis through machine learning. Journal of Neuroscience Methods, 2021, 351, 109073.	2.5	18
4	Mitigation of thermal curling of concrete slab using phase change material: A feasibility study. Cement and Concrete Composites, 2021, 120, 104021.	10.7	7
5	A Spatially Distributed Fiber-Optic Temperature Sensor for Applications in the Steel Industry. Sensors, 2020, 20, 3900.	3.8	24
6	Fiber optic sensors enabled monitoring of thermal curling of concrete pavement slab: Temperature, strain and inclination. Measurement: Journal of the International Measurement Confederation, 2020, 165, 108203.	5.0	22
7	A High-Resolution 2-D Fiber Optic Inclinometer for Structural Health Monitoring Applications. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 6544-6555.	4.7	23
8	Truly Distributed Coaxial Cable Sensing Based on Random Inhomogeneities. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 4600-4607.	4.7	8
9	A Miniaturized Optical Fiber Tip High-Temperature Sensor Based on Concave-Shaped Fabry–Perot Cavity. IEEE Photonics Technology Letters, 2019, 31, 35-38.	2.5	54
10	Contactless liquid interface measurement based on a hollow coaxial cable resonator. Sensors and Actuators A: Physical, 2019, 285, 623-627.	4.1	15
11	Distributed fiber-optic pressure sensor based on Bourdon tubes metered by optical frequency-domain reflectometry. Optical Engineering, 2019, 58, 1.	1.0	11
12	Optical Interferometric Pressure Sensor Based on a Buckled Beam With Low-Temperature Cross-Sensitivity. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 950-955.	4.7	34
13	A hollow coaxial cable Fabry–Pérot resonator for liquid dielectric constant measurement. Review of Scientific Instruments, 2018, 89, 045003.	1.3	19
14	A Centimeter-Range Displacement Sensor Based on a Hollow Coaxial Cable Fabry–Perot Resonator. IEEE Sensors Journal, 2018, 18, 4436-4442.	4.7	21
15	A Uniform Strain Transfer Scheme for Accurate Distributed Optical Fiber Strain Measurements in Civil Structures. Inventions, 2018, 3, 30.	2.5	6
16	A Liquid-Level Sensor Based on a Hollow Coaxial Cable Fabry–Perot Resonator With Micrometer Resolution. IEEE Transactions on Instrumentation and Measurement, 2018, 67, 2892-2897.	4.7	24
17	Probing changes in tilt angle with 20 nanoradian resolution using an extrinsic Fabry-Perot interferometer-based optical fiber inclinometer. Optics Express, 2018, 26, 2546.	3.4	42
18	An Embeddable Strain Sensor with 30 Nano-Strain Resolution Based on Optical Interferometry. Inventions, 2018, 3, 20.	2.5	5

YIYANG ZHUANG

#	Article	IF	CITATIONS
19	Displacement and Strain Measurement up to 1000 °C Using a Hollow Coaxial Cable Fabry-Perot Resonator. Sensors, 2018, 18, 1304.	3.8	18
20	Rayleigh backscattering based macrobending single mode fiber for distributed refractive index sensing. Sensors and Actuators B: Chemical, 2017, 248, 346-350.	7.8	53
21	A Displacement Sensor with Centimeter Dynamic Range and Submicrometer Resolution Based on an Optical Interferometer IEEE Sensors Journal, 2017, , 1-1.	4.7	30
22	An embeddable optical strain gauge based on a buckled beam. Review of Scientific Instruments, 2017, 88, 115002.	1.3	15
23	Probing Nanostrain via a Mechanically Designed Optical Fiber Interferometer. IEEE Photonics Technology Letters, 2017, 29, 1348-1351.	2.5	45
24	Unclonable Optical Fiber Identification Based on Rayleigh Backscattering Signatures. Journal of Lightwave Technology, 2017, 35, 4634-4640.	4.6	24
25	An Optical Interferometric Triaxial Displacement Sensor for Structural Health Monitoring: Characterization of Sliding and Debonding for a Delamination Process. Sensors, 2017, 17, 2696.	3.8	24
26	A Microwave Photonics Fiber Loop Ring-Down System. IEEE Sensors Journal, 2017, 17, 6565-6570.	4.7	6