
Stephan Lammel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999910/publications.pdf Version: 2024-02-01

STEDHAN LAMMEL

#	Article	IF	CITATIONS
1	Mesoaccumbal Dopamine Heterogeneity: What Do Dopamine Firing and Release Have to Do with It?. Annual Review of Neuroscience, 2022, 45, 109-129.	10.7	32
2	Relocation of an Extrasynaptic GABAA Receptor to Inhibitory Synapses Freezes Excitatory Synaptic Strength and Preserves Memory. Neuron, 2021, 109, 123-134.e4.	8.1	48
3	Cell specific photoswitchable agonist for reversible control of endogenous dopamine receptors. Nature Communications, 2021, 12, 4775.	12.8	20
4	Pain modulates dopamine neurons via a spinal–parabrachial–mesencephalic circuit. Nature Neuroscience, 2021, 24, 1402-1413.	14.8	52
5	Synthetic Biology Category Wins the 350th Anniversary Merck Innovation Cup. Trends in Biotechnology, 2020, 38, 1-4.	9.3	9
6	Aversion hot spots in the dopamine system. Current Opinion in Neurobiology, 2020, 64, 46-52.	4.2	46
7	Dopaminergic Control over the Tripartite Synapse. Neuron, 2020, 105, 954-956.	8.1	5
8	Characterization of transgenic mouse models targeting neuromodulatory systems reveals organizational principles of the dorsal raphe. Nature Communications, 2019, 10, 4633.	12.8	41
9	Chronic Stress Induces Activity, Synaptic, and Transcriptional Remodeling of the Lateral Habenula Associated with Deficits in Motivated Behaviors. Neuron, 2019, 104, 899-915.e8.	8.1	103
10	Hot topic in optogenetics: new implications of in vivo tissue heating. Nature Neuroscience, 2019, 22, 1039-1041.	14.8	12
11	A Neural Circuit Mechanism for Encoding Aversive Stimuli in the Mesolimbic Dopamine System. Neuron, 2019, 101, 133-151.e7.	8.1	349
12	Dopaminergic Circuits in Reward and Aversion. FASEB Journal, 2019, 33, 335.1.	0.5	0
13	Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations. Neuron, 2018, 97, 434-449.e4.	8.1	283
14	Viral vector strategies for investigating midbrain dopamine circuits underlying motivated behaviors. Pharmacology Biochemistry and Behavior, 2018, 174, 23-32.	2.9	8
15	Optogenetic Approaches to Neural Circuit Analysis in the Mammalian Brain. , 2016, , 221-231.		2
16	Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons. Neuron, 2015, 85, 429-438.	8.1	285
17	Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 2014, 76, 351-359.	4.1	606
18	Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons. Brain, 2014, 137, 2287-2302.	7.6	103

STEPHAN LAMMEL

#	Article	IF	CITATIONS
19	Natural Neural Projection Dynamics Underlying Social Behavior. Cell, 2014, 157, 1535-1551.	28.9	1,121
20	Progress in understanding mood disorders: optogenetic dissection of neural circuits. Genes, Brain and Behavior, 2014, 13, 38-51.	2.2	86
21	New Insights into the Specificity and Plasticity of Reward and Aversion Encoding in the Mesolimbic System. Journal of Neuroscience, 2013, 33, 17569-17576.	3.6	139
22	Illuminating the Opponent Process: Cocaine Effects on Habenulomesencephalic Circuitry. Journal of Neuroscience, 2013, 33, 13935-13937.	3.6	2
23	Input-specific control of reward and aversion in the ventral tegmental area. Nature, 2012, 491, 212-217.	27.8	1,062
24	Projection-Specific Modulation of Dopamine Neuron Synapses by Aversive and Rewarding Stimuli. Neuron, 2011, 70, 855-862.	8.1	642
25	Unique Properties of Mesoprefrontal Neurons within a Dual Mesocorticolimbic Dopamine System. Neuron, 2008, 57, 760-773.	8.1	1,044