Barak A Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999886/publications.pdf

Version: 2024-02-01

28 papers 1,919 citations

394421 19 h-index ⁵⁵²⁷⁸¹
26
g-index

41 all docs

41 docs citations

41 times ranked

2207 citing authors

#	Article	IF	CITATIONS
1	Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature, 2009, 457, 215-218.	27.8	287
2	Complex effects of nucleotide variants in a mammalian <i>cis</i> -regulatory element. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19498-19503.	7.1	245
3	High-throughput functional testing of ENCODE segmentation predictions. Genome Research, 2014, 24, 1595-1602.	5.5	232
4	Massively parallel in vivo enhancer assay reveals that highly local features determine the <i>cis</i> regulatory function of ChIP-seq peaks. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11952-11957.	7.1	188
5	Massively parallel synthetic promoter assays reveal the in vivo effects of binding site variants. Genome Research, 2013, 23, 1908-1915.	5.5	99
6	The cis-Regulatory Logic of Hedgehog Gradient Responses: Key Roles for Gli Binding Affinity, Competition, and Cooperativity. Science Signaling, 2011, 4, ra38.	3.6	89
7	A Simple Grammar Defines Activating and Repressing cis-Regulatory Elements in Photoreceptors. Cell Reports, 2016, 17, 1247-1254.	6.4	75
8	Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus. Nature Communications, 2017, 8, 14550.	12.8	73
9	Cell-to-Cell Variability in the Propensity to Transcribe Explains Correlated Fluctuations in GeneÂExpression. Cell Systems, 2015, 1, 315-325.	6.2	70
10	Thermodynamic State Ensemble Models of cis-Regulation. PLoS Computational Biology, 2012, 8, e1002407.	3.2	67
11	A massively parallel reporter assay dissects the influence of chromatin structure on cis-regulatory activity. Nature Biotechnology, 2019, 37, 90-95.	17.5	66
12	Synthetic and genomic regulatory elements reveal aspects of cis-regulatory grammar in mouse embryonic stem cells. ELife, 2020, 9, .	6.0	61
13	Interactions between pluripotency factors specify <i>cis</i> regulation in embryonic stem cells. Genome Research, 2016, 26, 778-786.	5.5	46
14	A test of the pioneer factor hypothesis using ectopic liver gene activation. ELife, 2022, 11 , .	6.0	35
15	PTRE-seq reveals mechanism and interactions of RNA binding proteins and miRNAs. Nature Communications, 2018, 9, 301.	12.8	33
16	How should novelty be valued in science?. ELife, 2017, 6, .	6.0	33
17	Promoter-distal RNA polymerase II binding discriminates active from inactive CCAAT/ enhancer-binding protein beta binding sites. Genome Research, 2015, 25, 1791-1800.	5.5	30
18	Local sequence features that influence AP-1 <i>cis</i> -regulatory activity. Genome Research, 2018, 28, 171-181.	5.5	30

#	Article	IF	CITATIONS
19	Genomic environments scale the activities of diverse core promoters. Genome Research, 2022, 32, 85-96.	5. 5	26
20	A Computational Framework for Analyzing Stochasticity in Gene Expression. PLoS Computational Biology, 2014, 10, e1003596.	3.2	24
21	Information content differentiates enhancers from silencers in mouse photoreceptors. ELife, 2021, 10,	6.0	18
22	Causal Variation in Yeast Sporulation Tends to Reside in a Pathway Bottleneck. PLoS Genetics, 2014, 10, e1004634.	3.5	16
23	Ultraconserved Elements in the Olig2 Promoter. PLoS ONE, 2008, 3, e3946.	2.5	15
24	Single Nucleotide Variants in Transcription Factors Associate More Tightly with Phenotype than with Gene Expression. PLoS Genetics, 2014, 10, e1004325.	3.5	14
25	CLIP and Massively Parallel Functional Analysis of CELF6 Reveal a Role in Destabilizing Synaptic Gene mRNAs through Interaction with 3′ UTR Elements. Cell Reports, 2020, 33, 108531.	6.4	14
26	Sex- and Mutation-Specific p53 Gain-of-Function Activity in Gliomagenesis. Cancer Research Communications, 2021, 1, 148-163.	1.7	6
27	GENE-59. NOT ALL p53 MUTATIONS ARE CREATED EQUAL: A MURINE ASTROCYTE MODEL FOR HIGH-THROUGHPUT FUNCTIONAL ASSESSMENT OF p53 MISSENSE MUTATIONS. Neuro-Oncology, 2019, 21, vil10-vil10.	1.2	0
28	Identification of a non oding SNP associated with risk for nonâ€syndromic orofacial clefting with alleleâ€specific effects on IRF6 expression in vitro. FASEB Journal, 2021, 35, .	0.5	0