
Michael Kearney

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The art of modelling range-shifting species. Methods in Ecology and Evolution, 2010, 1, 330-342.	2.2	1,945
2	Mechanistic niche modelling: combining physiological and spatial data to predict species' ranges. Ecology Letters, 2009, 12, 334-350.	3.0	1,675
3	Predicting species distributions for conservation decisions. Ecology Letters, 2013, 16, 1424-1435.	3.0	1,375
4	Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1665-1679.	1.8	1,049
5	Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5610-5615.	3.3	906
6	The potential for behavioral thermoregulation to buffer "cold-blooded―animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3835-3840.	3.3	865
7	Declining body size: a third universal response to warming?. Trends in Ecology and Evolution, 2011, 26, 285-291.	4.2	845
8	Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology, 2008, 17, 4398-4417.	2.0	580
9	Correlation and process in species distribution models: bridging a dichotomy. Journal of Biogeography, 2012, 39, 2119-2131.	1.4	526
10	MAPPING THE FUNDAMENTAL NICHE: PHYSIOLOGY, CLIMATE, AND THE DISTRIBUTION OF A NOCTURNAL LIZARD. Ecology, 2004, 85, 3119-3131.	1.5	404
11	Habitat, environment and niche: what are we modelling?. Oikos, 2006, 115, 186-191.	1.2	393
12	Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters, 2010, 3, 203-213.	2.8	376
13	Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito <i>Aedes aegypti</i> in Australia. Functional Ecology, 2009, 23, 528-538.	1.7	365
14	A Rapid Shift in a Classic Clinal Pattern in Drosophila Reflecting Climate Change. Science, 2005, 308, 691-693.	6.0	352
15	Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 2018, 8, 579-587.	8.1	330
16	Modelling species distributions without using species distributions: the cane toad in Australia under current and future climates. Ecography, 2008, 31, 423-434.	2.1	305
17	Hybridization, glaciation and geographical parthenogenesis. Trends in Ecology and Evolution, 2005, 20, 495-502.	4.2	300
18	Modelling the ecological niche from functional traits. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 3469-3483.	1.8	262

#	Article	IF	CITATIONS
19	Realized niche shift during a global biological invasion. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10233-10238.	3.3	238
20	Size, shape, and the thermal niche of endotherms. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19666-19672.	3.3	213
21	NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography, 2017, 40, 664-674.	2.1	192
22	Sensitivity to thermal extremes in Australian <i>Drosophila</i> implies similar impacts of climate change on the distribution of widespread and tropical species. Global Change Biology, 2014, 20, 1738-1750.	4.2	181
23	Determinants of inter-specific variation in basal metabolic rate. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2013, 183, 1-26.	0.7	172
24	Predicting the fate of a living fossil: how will global warming affect sex determination and hatching phenology in tuatara?. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 2185-2193.	1.2	171
25	The "covariation method―for estimating the parameters of the standard Dynamic Energy Budget model I: Philosophy and approach. Journal of Sea Research, 2011, 66, 270-277.	0.6	160
26	microclim: Global estimates of hourly microclimate based on long-term monthly climate averages. Scientific Data, 2014, 1, 140006.	2.4	160
27	Metabolic Scaling in Animals: Methods, Empirical Results, and Theoretical Explanations. , 2014, 4, 231-256.		147
28	Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. Advances in Ecological Research, 2018, , 101-161.	1.4	146
29	Forecasting species range dynamics with processâ€explicit models: matching methods to applications. Ecology Letters, 2019, 22, 1940-1956.	3.0	144
30	Open Science principles for accelerating trait-based science across the Tree of Life. Nature Ecology and Evolution, 2020, 4, 294-303.	3.4	144
31	Activity restriction and the mechanistic basis for extinctions under climate warming. Ecology Letters, 2013, 16, 1470-1479.	3.0	127
32	Modelling nutritional interactions: from individuals to communities. Trends in Ecology and Evolution, 2010, 25, 53-60.	4.2	111
33	Balancing heat, water and nutrients under environmental change: a thermodynamic niche framework. Functional Ecology, 2013, 27, 950-966.	1.7	110
34	Microclimate modelling at macro scales: a test of a general microclimate model integrated with gridded continentalâ€scale soil and weather data. Methods in Ecology and Evolution, 2014, 5, 273-286.	2.2	107
35	DO NOCTURNAL ECTOTHERMS THERMOREGULATE? A STUDY OF THE TEMPERATE GECKO <i>CHRISTINUS MARMORATUS</i> . Ecology, 2000, 81, 2984-2996.	1.5	103
36	Field studies of reptile thermoregulation: how well do physical models predict operative temperatures?. Functional Ecology, 2001, 15, 282-288.	1.7	103

#	Article	IF	CITATIONS
37	Biomechanics meets the ecological niche: the importance of temporal data resolution. Journal of Experimental Biology, 2012, 215, 922-933.	0.8	102
38	Tree-hugging koalas demonstrate a novel thermoregulatory mechanism for arboreal mammals. Biology Letters, 2014, 10, 20140235.	1.0	99
39	Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia. Global Change Biology, 2016, 22, 2425-2439.	4.2	91
40	Mechanistic variables can enhance predictive models of endotherm distributions: the American pika under current, past, and future climates. Global Change Biology, 2017, 23, 1048-1064.	4.2	91
41	Metabolic theory, life history and the distribution of a terrestrial ectotherm. Functional Ecology, 2012, 26, 167-179.	1.7	89
42	A method for computing hourly, historical, terrain orrected microclimate anywhere on earth. Methods in Ecology and Evolution, 2020, 11, 38-43.	2.2	88
43	Combining heat-transfer and energy budget models to predict thermal stress in Mediterranean intertidal mussels. Chemistry and Ecology, 2011, 27, 135-145.	0.6	87
44	NicheMapR – an R package for biophysical modelling: the ectotherm and Dynamic Energy Budget models. Ecography, 2020, 43, 85-96.	2.1	87
45	The origin and maintenance of metabolic allometry in animals. Nature Ecology and Evolution, 2019, 3, 598-603.	3.4	86
46	Lost Sex in the Reptiles: Constraints and Correlations. , 2009, , 447-474.		84
47	Hot rocks and much-too-hot rocks: seasonal patterns of retreat-site selection by a nocturnal ectotherm. Journal of Thermal Biology, 2002, 27, 205-218.	1.1	83
48	Reconciling theories for metabolic scaling. Journal of Animal Ecology, 2014, 83, 20-29.	1.3	81
49	Excluding access to invasion hubs can contain the spread of an invasive vertebrate. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 2900-2908.	1.2	80
50	Modeling the consequences of thermal trait variation for the cane toad invasion of Australia. Ecological Applications, 2010, 20, 2273-2285.	1.8	76
51	The "covariation method―for estimating the parameters of the standard Dynamic Energy Budget model II: Properties and preliminary patterns. Journal of Sea Research, 2011, 66, 278-288.	0.6	76
52	Testing Metabolic Theories. American Naturalist, 2012, 180, 546-565.	1.0	74
53	Field tests of a general ectotherm niche model show how water can limit lizard activity and distribution. Ecological Monographs, 2018, 88, 672-693.	2.4	74
54	Early emergence in a butterfly causally linked to anthropogenic warming. Biology Letters, 2010, 6, 674-677.	1.0	68

#	Article	IF	CITATIONS
55	A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography, 2012, 39, 2132-2145.	1.4	68
56	Waves of parthenogenesis in the desert: evidence for the parallel loss of sex in a grasshopper and a gecko from Australia. Molecular Ecology, 2006, 15, 1743-1748.	2.0	66
57	Integrating phylogeography and physiology reveals divergence of thermal traits between central and peripheral lineages of tropical rainforest lizards. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1680-1687.	1.8	66
58	A Manipulative Test of Competing Theories for Metabolic Scaling. American Naturalist, 2011, 178, 746-754.	1.0	65
59	Color Change for Thermoregulation versus Camouflage in Free-Ranging Lizards. American Naturalist, 2016, 188, 668-678.	1.0	65
60	Why is sex so unpopular in the Australian desert?. Trends in Ecology and Evolution, 2003, 18, 605-607.	4.2	61
61	Linking Eco-Energetics and Eco-Hydrology to Select Sites for the Assisted Colonization of Australia's Rarest Reptile. Biology, 2013, 2, 1-25.	1.3	61
62	Forecasting wildlife dieâ€offs from extreme heat events. Animal Conservation, 2019, 22, 386-395.	1.5	61
63	Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20160626.	1.2	57
64	Integrating mechanistic and correlative niche models to unravel rangeâ€limiting processes in a temperate amphibian. Global Change Biology, 2019, 25, 2633-2647.	4.2	52
65	The toad ahead: challenges of modelling the range and spread of an invasive species. Wildlife Research, 2008, 35, 222.	0.7	51
66	A dynamic energy budget for the whole life ycle of holometabolous insects. Ecological Monographs, 2015, 85, 353-371.	2.4	50
67	Mechanistic models for predicting insect responses to climate change. Current Opinion in Insect Science, 2016, 17, 81-86.	2.2	50
68	Phylogeography of sexual Heteronotia binoei (Gekkonidae) in the Australian arid zone: climatic cycling and repetitive hybridization. Molecular Ecology, 2005, 14, 2755-2772.	2.0	49
69	Reflection of near-infrared light confers thermal protection in birds. Nature Communications, 2018, 9, 3610.	5.8	47
70	Thermal correlates of foraging-site selection by Chinese pit-vipers (Gloydius shedaoensis, Viperidae). Journal of Thermal Biology, 2002, 27, 405-412.	1.1	46
71	Combining Phylogeography with Distribution Modeling: Multiple Pleistocene Range Expansions in a Parthenogenetic Gecko from the Australian Arid Zone. PLoS ONE, 2007, 2, e760.	1.1	46
72	Sociality in Lizards: Why Do Thick-tailed Geckos (Nephrurus milii) Aggregate?. Behaviour, 2003, 140, 1039-1052.	0.4	45

#	Article	IF	CITATIONS
73	Climateâ€related spatial and temporal variation in bill morphology over the past century in Australian parrots. Journal of Biogeography, 2015, 42, 1163-1175.	1.4	45
74	Predicting climate warming effects on green turtle hatchling viability and dispersal performance. Functional Ecology, 2015, 29, 768-778.	1.7	44
75	Morphological and Physiological Correlates of Hybrid Parthenogenesis. American Naturalist, 2004, 164, 803-813.	1.0	42
76	Three questions about the ecoâ€physiology of overwintering underground. Ecology Letters, 2021, 24, 170-185.	3.0	42
77	Morphology and burrowing energetics of semi-fossorial skinks (<i>Liopholis</i>). Journal of Experimental Biology, 2015, 218, 2416-26.	0.8	40
78	An individualâ€based model of ectotherm movement integrating metabolic and microclimatic constraints. Methods in Ecology and Evolution, 2018, 9, 472-489.	2.2	40
79	Persistence through tough times: fixed and shifting refuges in threatened species conservation. Biodiversity and Conservation, 2019, 28, 1303-1330.	1.2	40
80	Thermal Sensitivity of Aedes aegypti From Australia: Empirical Data and Prediction of Effects on Distribution. Journal of Medical Entomology, 2011, 48, 914-923.	0.9	39
81	DEVELOPMENTAL SUCCESS, STABILITY, AND PLASTICITY IN CLOSELY RELATED PARTHENOGENETIC AND SEXUAL LIZARDS (HETERONOTIA, GEKKONIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 1560-1572.	1.1	38
82	Lower fecundity in parthenogenetic geckos than sexual relatives in the Australian arid zone. Journal of Evolutionary Biology, 2005, 18, 609-618.	0.8	38
83	Where do functional traits come from? The role of theory and models. Functional Ecology, 2021, 35, 1385-1396.	1.7	38
84	Antipredator Responses of Free-Ranging Pit Vipers(Gloydius shedaoensis, Viperidae). Copeia, 2002, 2002, 843-850.	1.4	37
85	Experimental analysis of retreat-site selection by thick-tailed geckos Nephrurus milii. Austral Ecology, 2004, 29, 547-552.	0.7	36
86	Ecologists have already started rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 2006, 21, 481-482.	4.2	36
87	Ontogenetic and Interspecific Metabolic Scaling in Insects. American Naturalist, 2014, 184, 695-701.	1.0	36
88	The Extinction of Dengue through Natural Vulnerability of Its Vectors. PLoS Neglected Tropical Diseases, 2010, 4, e922.	1.3	35
89	Modeling behavioral thermoregulation in a climate change sentinel. Ecology and Evolution, 2015, 5, 5810-5822.	0.8	34
90	Bergmann meets Scholander: geographical variation in body size and insulation in the koala is related to climate. Journal of Biogeography, 2015, 42, 791-802.	1.4	33

#	Article	IF	CITATIONS
91	Reptile embryos and climate change: Modelling limits of viability to inform translocation decisions. Biological Conservation, 2016, 204, 134-147.	1.9	33
92	The trade-off between maturation and growth during accelerated development in frogs. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2012, 163, 95-102.	0.8	32
93	Under the weather?—The direct effects of climate warming on a threatened desert lizard are mediated by their activity phase and burrow system. Journal of Animal Ecology, 2018, 87, 660-671.	1.3	32
94	Stageâ€dependent physiological responses in a butterfly cause nonâ€additive effects on phenology. Oikos, 2012, 121, 1464-1472.	1.2	30
95	The roles of acclimation and behaviour in buffering climate change impacts along elevational gradients. Journal of Animal Ecology, 2020, 89, 1722-1734.	1.3	30
96	A radiotelemetric study of movements and thermal biology of insular Chinese pit-vipers (Gloydiusshedaoensis, Viperidae). Oikos, 2003, 100, 342-352.	1.2	29
97	Testing mechanistic models of growth in insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151973.	1.2	29
98	Can next-generation soil data products improve soil moisture modelling at the continental scale? An assessment using a new microclimate package for the R programming environment. Journal of Hydrology, 2018, 561, 662-673.	2.3	28
99	SPATIO-TEMPORAL CHANGES IN THE STRUCTURE OF AN AUSTRALIAN FROG HYBRID ZONE: A 40-YEAR PERSPECTIVE. Evolution; International Journal of Organic Evolution, 2013, 67, 3442-3454.	1.1	27
100	Ontogenetic and interspecific scaling of consumption in insects. Oikos, 2015, 124, 1564-1570.	1.2	26
101	What is the status of metabolic theory one century after <scp>P</scp> Ãŀ/4tter invented the von <scp>B</scp> ertalanffy growth curve?. Biological Reviews, 2021, 96, 557-575.	4.7	26
102	The evolution of sexual and parthenogenetic <i>Warramaba</i> : a window onto Plio–Pleistocene diversification processes in an arid biome. Molecular Ecology, 2008, 17, 5257-5275.	2.0	25
103	Molecular patterns of introgression in a classic hybrid zone between the <scp>A</scp> ustralian tree frogs, <i><scp>L</scp>itoria ewingii</i> and <i><scp>L</scp>.Âparaewingi</i> : evidence of a tension zone. Molecular Ecology, 2013, 22, 1869-1883.	2.0	25
104	Structure and fragmentation of growling grass frog metapopulations. Conservation Genetics, 2013, 14, 313-322.	0.8	25
105	Co-Gradient Variation in Growth Rate and Development Time of a Broadly Distributed Butterfly. PLoS ONE, 2014, 9, e95258.	1.1	25
106	Behavioural thermoregulation and the relative roles of convection and radiation in a basking butterfly. Journal of Thermal Biology, 2014, 41, 65-71.	1.1	25
107	An estimate of the water budget for the endangered night parrot of Australia under recent and future climates. Climate Change Responses, 2016, 3, .	2.6	25
108	Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190234.	1.2	25

#	Article	IF	CITATIONS
109	Where do Functional Traits Come From? The role of theory and models. Biodiversity Information Science and Standards, 0, 3, .	0.0	24
110	Do Nocturnal Ectotherms Thermoregulate? A Study of the Temperate Gecko Christinus marmoratus. Ecology, 2000, 81, 2984.	1.5	23
111	Hydroregulation. , 2019, , 343-374.		23
112	Microclimate modelling of beach sand temperatures reveals high spatial and temporal variation at sea turtle rookeries. Journal of Thermal Biology, 2020, 88, 102522.	1.1	22
113	Evaluating and predicting risk to a large reptile (Varanus varius) from feral cat baiting protocols. Biological Invasions, 2013, 15, 1653-1663.	1.2	21
114	Response to Lundmark: Polyploidization, hybridization and geographical parthenogenesis. Trends in Ecology and Evolution, 2006, 21, 10.	4.2	20
115	Fine-scale microhabitat selection for dense vegetation in a heathland rodent, Rattus lutreolus: Insights from intraspecific and temporal patterns. Austral Ecology, 2007, 32, 315-325.	0.7	20
116	Linking thermal adaptation and life-history theory explains latitudinal patterns of voltinism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180547.	1.8	20
117	Why do Juvenile Chinese Pit-Vipers (Gloydius shedaoensis) Select Arboreal Ambush Sites?. Ethology, 2002, 108, 897-910.	0.5	19
118	Increased Capacity for Sustained Locomotion at Low Temperature in Parthenogenetic Geckos of Hybrid Origin. Physiological and Biochemical Zoology, 2005, 78, 316-324.	0.6	19
119	Dynamic Energy Budget Theory: An Efficient and General Theory for Ecology. BioScience, 2015, 65, 341-341.	2.2	18
120	Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia?. Journal of Thermal Biology, 2015, 54, 66-77.	1.1	18
121	An endangered flightless grasshopper with strong genetic structure maintains population genetic variation despite extensive habitat loss. Ecology and Evolution, 2021, 11, 5364-5380.	0.8	18
122	A costâ€effective method of assessing thermal habitat quality for endotherms. Austral Ecology, 2011, 36, 297-302.	0.7	17
123	Is fire a threatening process for Liopholis kintorei, a nationally listed threatened skink?. Wildlife Research, 2015, 42, 207.	0.7	17
124	Models of primary sex ratios at a major flatback turtle rookery show an anomalous masculinising trend. Climate Change Responses, 2014, 1, .	2.6	15
125	Future winters present a complex energetic landscape of decreased costs and reduced risk for a freezeâ€tolerant amphibian, the Wood Frog (<i>Lithobates sylvaticus</i>). Global Change Biology, 2020, 26, 6350-6362.	4.2	15
126	How will snow alter exposure of organisms to cold stress under climate warming?. Global Ecology and Biogeography, 2020, 29, 1246-1256.	2.7	15

#	Article	IF	CITATIONS
127	Novel applications of thermocyclers for phenotyping invertebrate thermal responses. Methods in Ecology and Evolution, 2016, 7, 1201-1208.	2.2	14
128	One lump or two? Explaining a major latitudinal transition in reproductive allocation in a viviparous lizard. Functional Ecology, 2016, 30, 1373-1383.	1.7	14
129	Life in the slow lane? A dynamic energy budget model for the western swamp turtle, Pseudemydura umbrina. Journal of Sea Research, 2019, 143, 89-99.	0.6	14
130	Modeling the distribution of niche space and risk for a freezeâ€ŧolerant ectotherm, <i>Lithobates sylvaticus</i> . Ecosphere, 2019, 10, e02788.	1.0	14
131	Integrating dynamic plant growth models and microclimates for species distribution modelling. Ecological Modelling, 2020, 435, 109262.	1.2	14
132	A general model of the thermal constraints on the world's most destructive locust, <i>Schistocerca gregaria</i> . Ecological Applications, 2021, 31, e02310.	1.8	14
133	Modelling the joint effects of body size and microclimate on heat budgets and foraging opportunities of ectotherms. Methods in Ecology and Evolution, 2021, 12, 458-467.	2.2	13
134	NicheMapR – an R package for biophysical modelling: the endotherm model. Ecography, 2021, 44, 1595-1605.	2.1	13
135	Accidental altruism in insular pit-vipers (Gloydius shedaoensis, Viperidae). Evolutionary Ecology, 2002, 16, 541-548.	0.5	12
136	Summer egg diapause in a matchstick grasshopper synchronizes the life cycle and buffers thermal extremes. Integrative Zoology, 2018, 13, 437-449.	1.3	12
137	A hierarchical approach to understanding physiological associations with climate. Global Ecology and Biogeography, 2022, 31, 332-346.	2.7	12
138	<scp>mcera5</scp> : Driving microclimate models with ERA5 global gridded climate data. Methods in Ecology and Evolution, 2022, 13, 1402-1411.	2.2	12
139	The effect of egg size on hatch time and metabolic rate: theoretical and empirical insights on developing insect embryos. Functional Ecology, 2017, 31, 227-234.	1.7	11
140	Feeling the pressure at home: Predator activity at the burrow entrance of an endangered aridâ€∉one skink. Austral Ecology, 2018, 43, 102-109.	0.7	11
141	Reproductive Hyperallometry Does Not Challenge Mechanistic Growth Models. Trends in Ecology and Evolution, 2019, 34, 275-276.	4.2	11
142	Physiological implications of genomic state in parthenogenetic lizards of reciprocal hybrid origin. Journal of Evolutionary Biology, 2012, 25, 252-263.	0.8	10
143	Climate and Fire Scenario Uncertainty Dominate the Evaluation of Options for Conserving the Great Desert Skink. Conservation Letters, 2016, 9, 181-190.	2.8	10
144	Multiple working hypotheses for hyperallometric reproduction in fishes under metabolic theory. Ecological Modelling, 2020, 433, 109228.	1.2	10

#	Article	IF	CITATIONS
145	Dynamics of death by heat. Science, 2020, 369, 1163-1163.	6.0	10
146	Tracheal branching in ants is area-decreasing, violating a central assumption of network transport models. PLoS Computational Biology, 2020, 16, e1007853.	1.5	10
147	Parthenogenesis without costs in a grasshopper with hybrid origins. Science, 2022, 376, 1110-1114.	6.0	10
148	Using Biophysical Models to Improve Survey Efficiency for Cryptic Ectotherms. Journal of Wildlife Management, 2020, 84, 1185-1195.	0.7	9
149	A replicated comparison of breedingâ€container suitability for the dengue vector <i>Aedes aegypti</i> in tropical and temperate Australia. Austral Ecology, 2013, 38, 219-229.	0.7	8
150	Process, correlation and parameter fitting in species distribution models: a response to Kriticos <i>etÂal</i> . Journal of Biogeography, 2013, 40, 612-613.	1.4	8
151	Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?. Frontiers of Biogeography, 2016, 7, .	0.8	8
152	Grasshopper country before and after: a resurvey of Ken Key's collecting expeditions in New South Wales, Australia, 70Âyears on. Austral Entomology, 2021, 60, 52-65.	0.8	8
153	Stasipatric speciation: resurrecting a system to bury a hypothesis?. Molecular Ecology, 2009, 18, 3331-3333.	2.0	7
154	Biomechanics meets the ecological niche: the importance of temporal data resolution. Journal of Experimental Biology, 2012, 215, 1422-1424.	0.8	7
155	A continent-wide analysis of the shade requirements of red and western grey kangaroos. Temperature, 2016, 3, 340-353.	1.6	7
156	The Fundamental Niche Concept Connects Individuals to Populations: A Comment on Angilletta et al Integrative and Comparative Biology, 2019, 59, 1509-1510.	0.9	7
157	microclim <scp>US</scp> : hourly estimates of historical microclimates for the United States of America with example applications. Ecology, 2019, 100, e02829.	1.5	7
158	MicroclimOz – A microclimate data set for Australia, with example applications. Austral Ecology, 2019, 44, 534-544.	0.7	7
159	Too hot for the devil? Did climate change cause the midâ€Holocene extinction of the Tasmanian devil <i>Sarcophilus harrisii</i> from mainland Australia?. Ecography, 2022, 2022, .	2.1	7
160	Too hot to handle? Balancing increased trapability with capture mortality in hot weather pitfall trapping. Austral Ecology, 2016, 41, 918-926.	0.7	5
161	Too much hot air? Informing ethical trapping in hot, dry environments. Wildlife Research, 2018, 45, 16.	0.7	5
162	ENM2020: A Free Online Course and Set of Resources on Modeling Species' Niches and Distributions. Biodiversity Informatics, 0, 17, .	3.0	5

#	Article	IF	CITATIONS
163	Too hot to hunt: Mechanistic predictions of thermal refuge from cat predation risk. Conservation Letters, 2022, 15, .	2.8	5
164	Geostatistical interpolation can reliably extend coverage of a very highâ€resolution model of temperatureâ€dependent sex determination. Journal of Biogeography, 2018, 45, 652-663.	1.4	4
165	Couples that have chemistry: when ecological theories meet. Oikos, 2015, 124, 917-919.	1.2	3
166	The matchstick grasshopper genus Warramaba (Morabidae: Morabinae): a description of four new species and a photographic guide to the group. Zootaxa, 2018, 4482, 201-244.	0.2	3
167	Variation in fur properties may explain differences in heat-related mortality among Australian flying-foxes. Australian Journal of Zoology, 2021, , .	0.6	3
168	Mechanisms and consequences of changing body size: reply to Bickford et al. and McCauley and Mabry. Trends in Ecology and Evolution, 2011, 26, 555-556.	4.2	2
169	The universality of the von Bertalanffy growth curve. Physics of Life Reviews, 2017, 20, 63-65.	1.5	2
170	DEVELOPMENTAL SUCCESS, STABILITY, AND PLASTICITY IN CLOSELY RELATED PARTHENOGENETIC AND SEXUAL LIZARDS (HETERONOTIA, GEKKONIDAE). Evolution; International Journal of Organic Evolution, 2004, 58, 1560.	1.1	1
171	A comment on the growth model of Sibly and Brown (2020). Journal of Zoology, 2020, 312, 145-146.	0.8	1
172	No sex please, we're clonal. Trends in Ecology and Evolution, 2009, 24, 478-479.	4.2	0
173	Prizing open a black box to understand climatic constraints on seabirds. Journal of Biogeography, 2011, 38, 417-418.	1.4	0
174	The tradeâ€off between maturation and growth during accelerated vertebrate development. FASEB Journal, 2012, 26, 886.15.	0.2	0