Julianna Lisziewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999475/publications.pdf Version: 2024-02-01

	147726	85498
5,344	31	71
citations	h-index	g-index
91	91	4198
docs citations	times ranked	citing authors
	citations 91	5,34431citationsh-index9191

LILLANNA LISZIEWICZ

#	Article	IF	CITATIONS
1	Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. Nature Medicine, 1999, 5, 512-517.	15.2	1,962
2	Hydroxyurea as an inhibitor of human immunodeficiency virus-type 1 replication. Science, 1994, 266, 801-805.	6.0	341
3	Control of HIV despite the Discontinuation of Antiretroviral Therapy. New England Journal of Medicine, 1999, 340, 1683-1683.	13.9	305
4	Control of SIV Rebound Through Structured Treatment Interruptions During Early Infection. , 2000, 290, 1591-1593.		166
5	Inhibition of human immunodeficiency virus type 1 replication by regulated expression of a polymeric Tat activation response RNA decoy as a strategy for gene therapy in AIDS Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 8000-8004.	3.3	144
6	Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7942-7946.	3.3	119
7	Long-term treatment of human immunodeficiency virus-infected cells with antisense oligonucleotide phosphorothioates Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 3860-3864.	3.3	103
8	Mutations in thepolGene of Human Immunodeficiency Virus Type 1 in Infected Patients Receiving Didanosine and Hydroxyurea Combination Therapy. Journal of Infectious Diseases, 1997, 176, 899-903.	1.9	99
9	Combination of a Drug Targeting the Cell with a Drug Targeting the Virus Controls Human Immunodeficiency Virus Type 1 Resistance. AIDS Research and Human Retroviruses, 1997, 13, 1403-1409.	0.5	93
10	Treatment of Human Immunodeficiency Virus Infection with Hydroxyurea, Didanosine, and a Protease Inhibitor before Seroconversion Is Associated with Normalized Immune Parameters and Limited Viral Reservoir. Journal of Infectious Diseases, 1999, 180, 1827-1832.	1.9	92
11	Structured Treatment Interruptions for the Management of HIV Infection. JAMA - Journal of the American Medical Association, 2001, 286, 2981.	3.8	92
12	DermaVir: A Novel Topical Vaccine for HIV/AIDS. Journal of Investigative Dermatology, 2005, 124, 160-169.	0.3	82
13	Structured treatment interruptions to control HIV-1 infection. Lancet, The, 2000, 355, 287-288.	6.3	72
14	Direct analysis of mitochondrial toxicity of antiretroviral drugs. Aids, 2001, 15, 1687-1694.	1.0	68
15	Control of viral rebound through therapeutic immunization with DermaVir. Aids, 2005, 19, 35-43.	1.0	63
16	Single DermaVir Immunization: Dose-Dependent Expansion of Precursor/Memory T Cells against All HIV Antigens in HIV-1 Infected Individuals. PLoS ONE, 2012, 7, e35416.	1.1	62
17	Induction of Potent Human Immunodeficiency Virus Type 1-Specific T-Cell-Restricted Immunity by Genetically Modified Dendritic Cells. Journal of Virology, 2001, 75, 7621-7628.	1.5	60
18	Study of antisense oligonucleotide phosphorothioates containing segments of oligodeoxynucleotides and 2′-o- methyloligoribonucleotides. Bioorganic and Medicinal Chemistry Letters, 1994, 4, 2929-2934.	1.0	59

#	Article	IF	CITATIONS
19	Expansion of CD57 and CD62L-CD45RA+ CD8 T lymphocytes correlates with reduced viral plasma RNA after primary HIV infection. Aids, 1999, 13, 891-899.	1.0	57
20	Safety, Tolerability, and Immunogenicity of Repeated Doses of DermaVir, a Candidate Therapeutic HIV Vaccine, in HIV-Infected Patients Receiving Combination Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2013, 64, 351-359.	0.9	52
21	HIV-1 suppression by early treatment with hydroxyurea, didanosine, and a protease inhibitor. Lancet, The, 1998, 352, 199-200.	6.3	50
22	HIV-1-Specific T Cell Precursors with High Proliferative Capacity Correlate with Low Viremia and High CD4 Counts in Untreated Individuals. Journal of Immunology, 2008, 180, 5907-5915.	0.4	45
23	Hydroxyurea in the Treatment of HIV Infection. Drug Safety, 2003, 26, 605-624.	1.4	44
24	Nanomedicine applications towards the cure of HIV. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 28-38.	1.7	43
25	HIV-1 prophylactic vaccine comprised of topical DermaVir prime and protein boost elicits cellular immune responses and controls pathogenic R5 SHIV162P3. Virology, 2007, 366, 197-211.	1.1	41
26	Nanochemistry-Based Immunotherapy for HIV-1. Current Medicinal Chemistry, 2007, 14, 1911-1919.	1.2	40
27	IL-15 as memory T-cell adjuvant for topical HIV-1 DermaVir vaccine. Vaccine, 2008, 26, 5188-5195.	1.7	40
28	Cloning and characterization of theSaccharomyces cerevisiaeCDC6 gene. Nucleic Acids Research, 1988, 16, 11507-11520.	6.5	39
29	Rationale for the Use of Hydroxyurea as an Anti-Human Immunodeficiency Virus Drug. Clinical Infectious Diseases, 2000, 30, S193-S197.	2.9	38
30	Rational development of a stable liquid formulation for nanomedicine products. International Journal of Pharmaceutics, 2010, 392, 261-267.	2.6	37
31	Immune Restoration by Combination of a Cytostatic Drug (Hydroxyurea) and Anti-HIV Drugs (Didanosine and Indinavir). AIDS Research and Human Retroviruses, 1999, 15, 619-624.	0.5	34
32	DermaVir, a novel HIV immunisation technology. Vaccine, 2005, 23, 2030-2034.	1.7	34
33	New Uses for Old Drugs in HIV Infection. Drugs, 1999, 58, 953-963.	4.9	33
34	Structured treatment interruptions in HIV/AIDS therapy. Microbes and Infection, 2002, 4, 207-214.	1.0	32
35	Vaccination of Mice Using the West Nile Virus E-Protein in a DNA Prime-Protein Boost Strategy Stimulates Cell-Mediated Immunity and Protects Mice against a Lethal Challenge. PLoS ONE, 2014, 9, e87837.	1.1	32
36	Calcium Uptake and Protein Phosphorylation in Myenteric Neurons, Like the Release of Vasoactive Intestinal Polypeptide and Acetylcholine, Are Frequency Dependent. Journal of Neurochemistry, 1989, 52, 1637-1640.	2.1	30

#	Article	IF	CITATIONS
37	Control of HIV during a structured treatment interruption in chronically infected individuals with vigorous T cell responses. HIV Clinical Trials, 2002, 3, 115-124.	2.0	30
38	Cytokine-adjuvanted HIV-DNA vaccination strategies. Seminars in Immunopathology, 2006, 28, 231-238.	4.0	28
39	Hydroxyurea and Didanosine Long-Term Treatment Prevents HIV Breakthrough and Normalizes Immune Parameters. AIDS Research and Human Retroviruses, 1999, 15, 1333-1338.	0.5	27
40	Structure and biological activity of pathogen-like synthetic nanomedicines. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 497-506.	1.7	26
41	Antisense Phosphorothioate Oligodeoxynucleotides Alter HIV Type 1 Replication in Cultured Human Macrophages and Peripheral Blood Mononuclear Cells. AIDS Research and Human Retroviruses, 1995, 11, 863-867.	0.5	25
42	Hybrid oligonucleotides: Synthesis, biophysical properties, stability studies, and biological activity. Bioorganic and Medicinal Chemistry, 1996, 4, 1685-1692.	1.4	25
43	Analysis of amino insertion mutations in the fingers subdomain of HIV-1 reverse transcriptase 1 1Edited by J. Karn. Journal of Molecular Biology, 1999, 286, 995-1008.	2.0	25
44	Optimal suppression of HIV replication by low-dose hydroxyurea through the combination of antiviral and cytostatic (†virostatic') mechanisms. Aids, 2005, 19, 1173-1181.	1.0	25
45	Structured treatment interruptions as a potential alternative therapeutic regimen for HIV-infected patients: a review of recent clinical data and future prospects. Journal of Antimicrobial Chemotherapy, 2002, 50, 155-160.	1.3	23
46	SV40-derived vectors provide effective transgene expression and inhibition of HIV-1 using constitutive, conditional,and pol III promoters. Gene Therapy, 2001, 8, 1033-1042.	2.3	22
47	Complementary Antiviral Efficacy of Hydroxyurea and Protease Inhibitors in Human Immunodeficiency Virus-Infected Dendritic Cells and Lymphocytes. Journal of Virology, 2002, 76, 2274-2278.	1.5	22
48	Therapeutic vaccination for future management of HIV/AIDS. Vaccine, 2003, 21, 620-623.	1.7	22
49	A plasmid DNA immunogen expressing fifteen protein antigens and complex virus-like particles (VLP+) mimicking naturally occurring HIV. Vaccine, 2011, 29, 744-753.	1.7	21
50	Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Therapy, 2014, 21, 566-574.	2.3	19
51	Combination Gene Therapy: Synergistic Inhibition of Human Immunodeficiency Virus Tat and Rev Functions by a Single RNA Molecule. Human Gene Therapy, 2000, 11, 807-815.	1.4	17
52	Safety of hydroxyurea in the treatment of HIV infection. Expert Opinion on Drug Safety, 2004, 3, 279-288.	1.0	17
53	"Virostatics" as a Potential New Class of HIV Drugs. Current Pharmaceutical Design, 2004, 10, 4103-4120.	0.9	17
54	Block of Tat-Mediated Transactivation of Tumor Necrosis Factor Î ² Gene Expression by Polymeric-TAR Decoys. Virology, 1996, 222, 252-256.	1.1	15

#	Article	IF	CITATIONS
55	Strategies to Decrease Viral Load Rebound, and Prevent Loss of Cd4 and Onset of Resistance during Structured Treatment Interruptions. Antiviral Therapy, 2004, 9, 123-132.	0.6	15
56	The potential of topical DNA vaccines adjuvanted by cytokines. Expert Opinion on Biological Therapy, 2007, 7, 1563-1574.	1.4	14
57	Vaccinia assay for the rapid detection of functional HIV-specific CD8+ cytotoxic T lymphocytes. Journal of Immunological Methods, 2003, 276, 45-57.	0.6	13
58	Vaccine-Induced Protection of Rhesus Macaques against Plasma Viremia after Intradermal Infection with a European Lineage 1 Strain of West Nile Virus. PLoS ONE, 2014, 9, e112568.	1.1	13
59	T-Cell Receptor Excision Circles (TREC) in SHIV 89.6p and SIVmac251 Models of HIV-1 Infection. DNA and Cell Biology, 2004, 23, 1-13.	0.9	12
60	Topical DermaVir Vaccine Targeting Dendritic Cells. Current Drug Delivery, 2006, 3, 83-88.	0.8	12
61	Virostatics: A New Class of Anti-HIV Drugs. Current Medicinal Chemistry, 2007, 14, 233-241.	1.2	12
62	Induction of HIV-specific memory T-cell responses by topical DermaVir vaccine. Vaccine, 2007, 25, 3070-3074.	1.7	12
63	Hydroxyurea exerts a cytostatic but not immunosuppressive effect on T lymphocytes. Aids, 2005, 19, 137-144.	1.0	11
64	Effects of hydroxyurea on T cell count changes during primary HIV infection. Aids, 2000, 14, 619-622.	1.0	11
65	Inhibition of HIV-1 replication in chronically infected cell lines and peripheral blood mononuclear cells by retrovirus-mediated antitat gene transfer. Gene Therapy, 2000, 7, 321-328.	2.3	10
66	Gene Therapy Approaches to HIV Infection. Molecular Diagnosis and Therapy, 2002, 2, 245-252.	3.3	10
67	High efficiency lentiviral gene delivery in non-dividing cells by deoxynucleoside treatment. Journal of Gene Medicine, 2002, 4, 161-169.	1.4	10
68	APC-targeted immunization for the treatment of HIV-1. Expert Review of Vaccines, 2004, 3, S189-S198.	2.0	10
69	DermAll nanomedicine for allergen-specific immunotherapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1245-1254.	1.7	10
70	A Checkpoint in the Cell Cycle Progression as a Therapeutic Target to Inhibit HIV Replication. Journal of Infectious Diseases, 2007, 196, 1409-1415.	1.9	8
71	Efficacy ofantitatGene Therapy in the Presence of High Multiplicity Infection and Inflammatory Cytokines. Human Gene Therapy, 1996, 7, 2209-2216.	1.4	6
72	Quantification of HIV-specific CD8 T cells by in vitro stimulation with inactivated viral particles. Aids, 2002, 16, 1849-1857.	1.0	6

#	Article	IF	CITATIONS
73	TAR Decoys and Trans-Dominant gag Mutant for HIV-1 Gene Therapy. Antibiotics and Chemotherapy, 1996, 48, 192-197.	0.5	5
74	Short Communication: Methods of Using Interleukin 2 to Enhance HIV-Specific Immune Responses. AIDS Research and Human Retroviruses, 2002, 18, 289-293.	0.5	5
75	Stopping HAART temporarily in the absence of virus rebound: exploring new HIV treatment options. Current Opinion in HIV and AIDS, 2007, 2, 14-20.	1.5	5
76	DNA nanoparticles with core–shell morphology. Soft Matter, 2014, 10, 7653-7660.	1.2	5
77	Nanophysiology: The Janus Face of Immune Stimulation by Nanomedicines: Examples for the Good and the Bad. European Journal of Nanomedicine, 2010, 3, .	0.6	4
78	Precision COVID-19 Vaccine with Companion Diagnostics. Precision Nanomedicine, 2020, 3, .	0.4	3
79	Gamma/delta T cells. Clinical and Applied Immunology Reviews, 2003, 3, 235-245.	0.4	2
80	Unsung Hero Robert C. Gallo. Science, 2009, 323, 206-207.	6.0	2
81	Rational Design of Formulated DNA Vaccines: The DermaVir Approach. , 2012, , 127-143.		2
82	Preventive Nanomedicine: Nanomedicine for dendritic cell-targeted immunotherapy. European Journal of Nanomedicine, 2010, 3, .	0.6	1
83	HIV-specific immunotherapy with DermaVir, the first pDNA/PEIm pathogen-like nanomedicine. European Journal of Nanomedicine, 2012, 4, .	0.6	1
84	Combining antiretroviral drugs and immune therapies: an approach to achieve clinical benefit after treatment interruption. Current Opinion in HIV and AIDS, 2008, 3, 104-111.	1.5	0
85	HIV vaccine to induce cytotoxic T cells recognizing conserved HIV-1/2-epitopes derived from the most frequent HLA types of the human population. Immunotherapy, 2013, 5, 825-828.	1.0	0
86	Immunotherapy of HIV Disease. , 2005, , 505-522.		0
87	Nanomedicine and HIV/AIDS. , 2014, , 175-194.		Ο