
Coralee E Tye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3999348/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	LncMIR181A1HG is a novel chromatin-bound epigenetic suppressor of early stage osteogenic lineage commitment. Scientific Reports, 2022, 12, 7770.	1.6	4
2	Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Therapy, 2021, 28, 748-759.	2.3	20
3	RUNX1 and RUNX2 transcription factors function in opposing roles to regulate breast cancer stem cells. Journal of Cellular Physiology, 2020, 235, 7261-7272.	2.0	34
4	Participation of integrin \hat{l}^2 3 in osteoblast differentiation induced by titanium with nano or microtopography. Journal of Biomedical Materials Research - Part A, 2019, 107, 1303-1313.	2.1	29
5	RUNX1â€dependent mechanisms in biological control and dysregulation in cancer. Journal of Cellular Physiology, 2019, 234, 8597-8609.	2.0	48
6	Mitotically-Associated IncRNA (MANCR) Affects Genomic Stability and Cell Division in Aggressive Breast Cancer. Molecular Cancer Research, 2018, 16, 587-598.	1.5	62
7	Selective expression of long nonâ€coding RNAs in a breast cancer cell progression model. Journal of Cellular Physiology, 2018, 233, 1291-1299.	2.0	22
8	Intranuclear and higherâ€order chromatin organization of the major histone gene cluster in breast cancer. Journal of Cellular Physiology, 2018, 233, 1278-1290.	2.0	40
9	Nuclear organization mediates cancer-compromised genetic and epigenetic control. Advances in Biological Regulation, 2018, 69, 1-10.	1.4	10
10	Regulation of osteogenesis by long noncoding RNAs: An epigenetic mechanism contributing to bone formation. Connective Tissue Research, 2018, 59, 35-41.	1.1	21
11	Runx1 stabilizes the mammary epithelial cell phenotype and prevents epithelial to mesenchymal transition. Oncotarget, 2017, 8, 17610-17627.	0.8	53
12	Oncogenic epigenetic control. Aging, 2016, 8, 565-566.	1.4	2
13	Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes. Oncotarget, 2016, 7, 5094-5109.	0.8	89
14	Abstract B34: Secreted microRNAs from prostate cancer cells: Novel therapeutic targets. , 2016, , .		0
15	Chromatin interaction analysis reveals changes in small chromosome and telomere clustering between epithelial and breast cancer cells. Genome Biology, 2015, 16, 214.	3.8	206
16	Non-coding RNAs: Epigenetic regulators of bone development and homeostasis. Bone, 2015, 81, 746-756.	1.4	93
17	p38α MAPK Is Required for Tooth Morphogenesis and Enamel Secretion. Journal of Biological Chemistry, 2015, 290, 284-295.	1.6	31
18	Could IncRNAs be the Missing Links in Control of Mesenchymal Stem Cell Differentiation?. Journal of Cellular Physiology, 2015, 230, 526-534.	2.0	72

CORALEE E TYE

#	Article	IF	CITATIONS
19	Matrix Metalloproteinase-20 Over-Expression Is Detrimental to Enamel Development: A Mus musculus Model. PLoS ONE, 2014, 9, e86774.	1.1	22
20	Degradation of Enamel Matrix Proteins. , 2012, , 99-105.		0
21	Phosphorylation of Ser136 is critical for potent bone sialoprotein-mediated nucleation of hydroxyapatite crystals. Biochemical Journal, 2010, 428, 385-395.	1.7	41
22	Targeted p120-Catenin Ablation Disrupts Dental Enamel Development. PLoS ONE, 2010, 5, e12703.	1.1	45
23	Activation of the critical enamel protease kallikrein-4. , 2010, , 413-415.		0
24	Lysosomal Protease Expression in Mature Enamel. Cells Tissues Organs, 2009, 189, 111-114.	1.3	13
25	Transforming growth factorâ€Î²1 expression is upâ€regulated in maturationâ€stage enamel organ and may induce ameloblast apoptosis. European Journal of Oral Sciences, 2009, 117, 105-112.	0.7	36
26	In Vivo Functional Analysis of Polyglutamic Acid Domains in Recombinant Bone Sialoprotein. Journal of Histochemistry and Cytochemistry, 2007, 55, 35-42.	1.3	22
27	Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone, 2007, 41, 462-473.	1.4	282
28	Identification of the Type I Collagen-binding Domain of Bone Sialoprotein and Characterization of the Mechanism of Interaction. Journal of Biological Chemistry, 2005, 280, 13487-13492.	1.6	112
29	Delineation of the Hydroxyapatite-nucleating Domains of Bone Sialoprotein. Journal of Biological Chemistry, 2003, 278, 7949-7955.	1.6	183