Charan Ranganath

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/399914/charan-ranganath-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

177	15,660	71	124
papers	citations	h-index	g-index
197 ext. papers	18,320 ext. citations	6.2 avg, IF	7.18 L-index

#	Paper	IF	Citations
177	Event boundaries shape temporal organization of memory by resetting temporal context <i>Nature Communications</i> , 2022 , 13, 622	17.4	3
176	The Structure of Systematicity in the Brain. Current Directions in Psychological Science, 2022, 31, 124-130)6.5	1
175	The hippocampus supports high-precision binding in visual working memory Hippocampus, 2021,	3.5	4
174	The hippocampus and orbitofrontal cortex jointly represent task structure during memory-guided decision making. <i>Cell Reports</i> , 2021 , 37, 110065	10.6	1
173	Effects of retrieval practice on tested and untested information: Cortico-hippocampal interactions and error-driven learning. <i>Psychology of Learning and Motivation - Advances in Research and Theory</i> , 2021 , 125-155	1.4	O
172	Disrupted Modulation of Alpha and Low Beta Oscillations Mediates Temporal Sequence Memory Deficits in People With Schizophrenia. <i>Biological Psychiatry: Cognitive Neuroscience and Neuroimaging</i> , 2021 , 6, 1157-1164	3.4	0
171	Narratives bridge the divide between distant events in episodic memory. <i>Memory and Cognition</i> , 2021 , 1	2.2	6
170	Resurrected memories: Sleep-dependent memory consolidation saves memories from competition induced by retrieval practice. <i>Psychonomic Bulletin and Review</i> , 2021 , 28, 2035-2044	4.1	1
169	Transcranial Direct Current Stimulation Modulates Connectivity of Left Dorsolateral Prefrontal Cortex with Distributed Cortical Networks. <i>Journal of Cognitive Neuroscience</i> , 2021 , 33, 1381-1395	3.1	2
168	Intrinsic connectivity reveals functionally distinct cortico-hippocampal networks in the human brain. <i>PLoS Biology</i> , 2021 , 19, e3001275	9.7	11
167	Temporal proximity to the elicitation of curiosity is key for enhancing memory for incidental information. <i>Learning and Memory</i> , 2021 , 28, 34-39	2.8	3
166	Intensity-Dependent Changes in Quantified Resting Cerebral Perfusion With Multiple Sessions of Transcranial DC Stimulation. <i>Frontiers in Human Neuroscience</i> , 2021 , 15, 679977	3.3	O
165	The hippocampus constructs narrative memories across distant events. Current Biology, 2021, 31, 4935-	49. 4 5.∈	•7 ₅
164	Neural repetition suppression effects in the human hippocampus. <i>Neurobiology of Learning and Memory</i> , 2020 , 173, 107269	3.1	6
163	Task-specific Disruptions in Theta Oscillations during Working Memory for Temporal Order in People with Schizophrenia. <i>Journal of Cognitive Neuroscience</i> , 2020 , 32, 2117-2130	3.1	2
162	Using prefrontal transcranial direct current stimulation (tDCS) to enhance proactive cognitive control in schizophrenia. <i>Neuropsychopharmacology</i> , 2020 , 45, 1877-1883	8.7	9
161	Contextual Codes in the Hippocampus. <i>Trends in Neurosciences</i> , 2020 , 43, 357-359	13.3	

(2018-2020)

160	Structured Event Memory: A neuro-symbolic model of event cognition. <i>Psychological Review</i> , 2020 , 127, 327-361	6.3	48
159	Map Making: Constructing, Combining, and Inferring on Abstract Cognitive Maps. <i>Neuron</i> , 2020 , 107, 1226-1238.e8	13.9	41
158	Aging alters neural activity at event boundaries in the hippocampus and Posterior Medial network. <i>Nature Communications</i> , 2020 , 11, 3980	17.4	17
157	Retrieval practice facilitation of family psychoeducation in people with early psychosis. <i>Schizophrenia Research</i> , 2020 , 223, 186-191	3.6	1
156	The lateral prefrontal cortex and human long-term memory. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2019 , 163, 221-235	3	1
155	Reply to lactive and effective replay: systems consolidation reconsidered again U <i>Nature Reviews Neuroscience</i> , 2019 , 20, 507-508	13.5	2
154	A contextual binding theory of episodic memory: systems consolidation reconsidered. <i>Nature Reviews Neuroscience</i> , 2019 , 20, 364-375	13.5	113
153	Stress and the medial temporal lobe at rest: Functional connectivity is associated with both memory and cortisol. <i>Psychoneuroendocrinology</i> , 2019 , 106, 138-146	5	12
152	Curiosity and Learning 2019 , 397-417		9
151	Time, memory, and the legacy of Howard Eichenbaum. <i>Hippocampus</i> , 2019 , 29, 146-161	3.5	8
150	How Curiosity Enhances Hippocampus-Dependent Memory: The Prediction, Appraisal, Curiosity, and Exploration (PACE) Framework. <i>Trends in Cognitive Sciences</i> , 2019 , 23, 1014-1025	14	57
149	Dissociable medial temporal pathways for encoding emotional item and context information. <i>Neuropsychologia</i> , 2019 , 124, 66-78	3.2	17
148	Prefrontal transcranial direct current stimulation (tDCS) enhances behavioral and EEG markers of proactive control. <i>Cognitive Neuroscience</i> , 2019 , 10, 57-65	1.7	22
147	Adaptive task difficulty influences neural plasticity and transfer of training. <i>NeuroImage</i> , 2019 , 188, 111	- 1 2 ₃ 1	17
146	The Hippocampus Generalizes across Memories that Share Item and Context Information. <i>Journal of Cognitive Neuroscience</i> , 2019 , 31, 24-35	3.1	17
145	What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory?. <i>Neuroscience Letters</i> , 2018 , 680, 69-76	3.3	39
144	CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. <i>Nature Communications</i> , 2018 , 9, 294	17.4	82
143	Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information. <i>Journal of Cognitive Neuroscience</i> , 2018 , 30, 667-679	3.1	9

142	Neural oscillations during conditional associative learning. <i>NeuroImage</i> , 2018 , 174, 485-493	7.9	15
141	Space, time, and episodic memory: The hippocampus is all over the cognitive map. <i>Hippocampus</i> , 2018 , 28, 680-687	3.5	86
140	Brain activity related to working memory for temporal order and object information. <i>Behavioural Brain Research</i> , 2018 , 354, 55-63	3.4	20
139	Impact of oscillatory tDCS targeting left prefrontal cortex on source memory retrieval. <i>Cognitive Neuroscience</i> , 2018 , 9, 194-207	1.7	5
138	Curiosity-driven memory enhancement persists over time but does not benefit from post-learning sleep. <i>Cognitive Neuroscience</i> , 2018 , 9, 100-115	1.7	15
137	Theta oscillations promote temporal sequence learning. <i>Neurobiology of Learning and Memory</i> , 2018 , 153, 92-103	3.1	20
136	Dynamic integration of conceptual information during learning. PLoS ONE, 2018, 13, e0207357	3.7	3
135	Neural reactivation in parietal cortex enhances memory for episodically linked information. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 11084-11089	9 ^{11.5}	38
134	Representational Similarity Analyses. Handbook of Behavioral Neuroscience, 2018, 509-525	0.7	19
133	Entrainment enhances theta oscillations and improves episodic memory. <i>Cognitive Neuroscience</i> , 2018 , 9, 181-193	1.7	28
132	Theta Phase Synchronization between the Human Hippocampus and Prefrontal Cortex Increases during Encoding of Unexpected Information: A Case Study. <i>Journal of Cognitive Neuroscience</i> , 2018 , 30, 1646-1656	3.1	18
131	Viewpoints: how the hippocampus contributes to memory, navigation and cognition. <i>Nature Neuroscience</i> , 2017 , 20, 1434-1447	25.5	182
130	Time Regained: How the Human Brain Constructs Memory for Time. <i>Current Opinion in Behavioral Sciences</i> , 2017 , 17, 169-177	4	14
129	Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress. <i>Hippocampus</i> , 2017 , 27, 77-88	3.5	13
128	Prefrontal Cortex and Human Memory: An Integrated Account From the Cognitive Neuroscience of Working and Long-Term Memory 2017 , 275-293		
127	Dynamic Cortico-hippocampal Networks Underlying Memory and Cognition: The PMAT Framework 2017 , 559-589		7
126	Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information. <i>Neuropsychologia</i> , 2016 , 89, 356-363	3.2	5
125	Distinct neural mechanisms for remembering when an event occurred. <i>Hippocampus</i> , 2016 , 26, 554-9	3.5	45

(2015-2016)

124	Electrophysiological Evidence for Impaired Control of Motor Output in Schizophrenia. <i>Cerebral Cortex</i> , 2016 , 26, 1891-9	5.1	18
123	Functional connectivity based parcellation of the human medial temporal lobe. <i>Neurobiology of Learning and Memory</i> , 2016 , 134 Pt A, 123-134	3.1	38
122	Post-learning Hippocampal Dynamics Promote Preferential Retention of Rewarding Events. <i>Neuron</i> , 2016 , 89, 1110-20	13.9	104
121	Learning Warps Object Representations in the Ventral Temporal Cortex. <i>Journal of Cognitive Neuroscience</i> , 2016 , 28, 1010-23	3.1	14
120	The hippocampus: a special place for time. Annals of the New York Academy of Sciences, 2016, 1369, 93-	1605	57
119	Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: towards a harmonized segmentation protocol. <i>NeuroImage</i> , 2015 , 111, 526-4	1 ^{7.9}	209
118	Cortical and subcortical contributions to sequence retrieval: Schematic coding of temporal context in the neocortical recollection network. <i>NeuroImage</i> , 2015 , 121, 78-90	7.9	46
117	Functional and Neuroanatomic Specificity of Episodic Memory Dysfunction in Schizophrenia: A Functional Magnetic Resonance Imaging Study of the Relational and Item-Specific Encoding Task. <i>JAMA Psychiatry</i> , 2015 , 72, 909-16	14.5	88
116	Differential effects of stress-induced cortisol responses on recollection and familiarity-based recognition memory. <i>Neurobiology of Learning and Memory</i> , 2015 , 123, 1-10	3.1	31
115	Significance of objects in the perirhinal cortex. <i>Trends in Cognitive Sciences</i> , 2015 , 19, 302-3	14	11
114	Navigating the human hippocampus without a GPS. <i>Hippocampus</i> , 2015 , 25, 697-703	3.5	6
113	Memory and Space: Towards an Understanding of the Cognitive Map. <i>Journal of Neuroscience</i> , 2015 , 35, 13904-11	6.6	163
112	Impaired recollection of visual scene details in adults with autism spectrum conditions. <i>Journal of Abnormal Psychology</i> , 2015 , 124, 565-75	7	16
111	Cognitive Control of Episodic Memory in Schizophrenia: Differential Role of Dorsolateral and Ventrolateral Prefrontal Cortex. <i>Frontiers in Human Neuroscience</i> , 2015 , 9, 604	3.3	18
110	Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. <i>Progress in Brain Research</i> , 2015 , 219, 45-64	2.9	137
109	Algal toxin impairs sea lion memory and hippocampal connectivity, with implications for strandings. <i>Science</i> , 2015 , 350, 1545-7	33.3	52
108	Functional subregions of the human entorhinal cortex. ELife, 2015, 4,	8.9	118
107	Delay-dependent contributions of medial temporal lobe regions to episodic memory retrieval. <i>ELife</i> , 2015 , 4,	8.9	72

106	Author response: Functional subregions of the human entorhinal cortex 2015 ,		2
105	Hippocampal activity patterns carry information about objects in temporal context. <i>Neuron</i> , 2014 , 81, 1165-1178	13.9	224
104	Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. <i>NeuroImage</i> , 2014 , 85 Pt 2, 721-9	7.9	260
103	Medial temporal lobe coding of item and spatial information during relational binding in working memory. <i>Journal of Neuroscience</i> , 2014 , 34, 14233-42	6.6	93
102	States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. <i>Neuron</i> , 2014 , 84, 486-96	13.9	279
101	Activity reductions in perirhinal cortex predict conceptual priming and familiarity-based recognition. <i>Neuropsychologia</i> , 2014 , 52, 19-26	3.2	41
100	Complementary roles of human hippocampal subregions during retrieval of spatiotemporal context. <i>Journal of Neuroscience</i> , 2014 , 34, 6834-42	6.6	63
99	Functional connectivity relationships predict similarities in task activation and pattern information during associative memory encoding. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 1085-99	3.1	39
98	Brain mechanisms of successful recognition through retrieval of semantic context. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 1694-704	3.1	11
97	Temporal stability and moderating effects of age and sex on CNTRaCS task performance. <i>Schizophrenia Bulletin</i> , 2014 , 40, 835-44	1.3	28
96	Neural correlates of state- and strength-based perception. <i>Journal of Cognitive Neuroscience</i> , 2014 , 26, 792-809	3.1	9
95	Dissociable neural correlates of item and context retrieval in the medial temporal lobes. <i>Behavioural Brain Research</i> , 2013 , 254, 102-7	3.4	19
94	Spared and impaired spoken discourse processing in schizophrenia: effects of local and global language context. <i>Journal of Neuroscience</i> , 2013 , 33, 15578-87	6.6	13
93	Oscillatory activity during maintenance of spatial and temporal information in working memory. <i>Neuropsychologia</i> , 2013 , 51, 349-57	3.2	85
92	Medial temporal lobe contributions to cued retrieval of items and contexts. <i>Neuropsychologia</i> , 2013 , 51, 2322-32	3.2	40
91	Recollection and familiarity in schizophrenia: a quantitative review. <i>Biological Psychiatry</i> , 2013 , 73, 944-	-5 9 .9	44
90	Detecting changes in scenes: the hippocampus is critical for strength-based perception. <i>Neuron</i> , 2013 , 78, 1127-37	13.9	90
89	Expected reward modulates encoding-related theta activity before an event. <i>NeuroImage</i> , 2013 , 64, 68	- 7/ 19	64

(2011-2013)

88	Parahippocampal cortex activation during context reinstatement predicts item recollection. Journal of Experimental Psychology: General, 2013, 142, 1287-97	4.7	23
87	Adaptation to cognitive context and item information in the medial temporal lobes. <i>Neuropsychologia</i> , 2012 , 50, 3062-9	3.2	35
86	Neurophysiological evidence for a recollection impairment in amnesia patients that leaves familiarity intact. <i>Neuropsychologia</i> , 2012 , 50, 3004-14	3.2	39
85	Distinguishing highly confident accurate and inaccurate memory: insights about relevant and irrelevant influences on memory confidence. <i>Memory</i> , 2012 , 20, 48-62	1.8	30
84	Two cortical systems for memory-guided behaviour. <i>Nature Reviews Neuroscience</i> , 2012 , 13, 713-26	13.5	767
83	Neural correlates of relational and item-specific encoding during working and long-term memory in schizophrenia. <i>NeuroImage</i> , 2012 , 59, 1719-26	7.9	54
82	Examining ERP correlates of recognition memory: evidence of accurate source recognition without recollection. <i>NeuroImage</i> , 2012 , 62, 439-50	7.9	81
81	Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging. <i>Frontiers in Human Neuroscience</i> , 2012 , 6, 56	3.3	85
80	CNTRICS imaging biomarkers final task selection: Long-term memory and reinforcement learning. <i>Schizophrenia Bulletin</i> , 2012 , 38, 62-72	1.3	18
79	Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. <i>Journal of Neuroscience</i> , 2012 , 32, 6550-60	6.6	208
78	Clinical, functional, and intertask correlations of measures developed by the Cognitive Neuroscience Test Reliability and Clinical Applications for Schizophrenia Consortium. <i>Schizophrenia Bulletin</i> , 2012 , 38, 144-52	1.3	72
77	Relational and Item-Specific Encoding (RISE): task development and psychometric characteristics. <i>Schizophrenia Bulletin</i> , 2012 , 38, 114-24	1.3	55
76	Neural oscillations associated with item and temporal order maintenance in working memory. Journal of Neuroscience, 2011 , 31, 10803-10	6.6	135
75	Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. <i>Journal of Cognitive Neuroscience</i> , 2011 , 23, 257-65	3.1	147
74	Recollection, familiarity and memory strength: confusion about confounds. <i>Trends in Cognitive Sciences</i> , 2011 , 15, 337-8	14	16
73	Can cognitive training improve episodic memory?. <i>Neuron</i> , 2011 , 72, 688-91	13.9	23
72	ERP correlates of source memory: unitized source information increases familiarity-based retrieval. Brain Research, 2011 , 1367, 278-86	3.7	72
71	Prestimulus theta activity predicts correct source memory retrieval. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 10702-7	11.5	131

70	Electrophysiological Correlates of Episodic Memory Processes 2011,		8
69	Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. Journal of Neuroscience, 2010, 30, 15558-65	6.6	143
68	Medial temporal lobe activity during source retrieval reflects information type, not memory strength. <i>Journal of Cognitive Neuroscience</i> , 2010 , 22, 1808-18	3.1	140
67	Use of eye movement monitoring to examine item and relational memory in schizophrenia. <i>Biological Psychiatry</i> , 2010 , 68, 610-6	7.9	33
66	Theta and alpha oscillations during working-memory maintenance predict successful long-term memory encoding. <i>Neuroscience Letters</i> , 2010 , 468, 339-43	3.3	108
65	Intracranial EEG correlates of expectancy and memory formation in the human hippocampus and nucleus accumbens. <i>Neuron</i> , 2010 , 65, 541-9	13.9	126
64	The medial temporal lobe supports conceptual implicit memory. <i>Neuron</i> , 2010 , 68, 835-42	13.9	94
63	Binding Items and Contexts: The Cognitive Neuroscience of Episodic Memory. <i>Current Directions in Psychological Science</i> , 2010 , 19, 131-137	6.5	120
62	A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory. <i>Hippocampus</i> , 2010 , 20, 1263-90	3.5	268
61	Prefrontal activation deficits during episodic memory in schizophrenia. <i>American Journal of Psychiatry</i> , 2009 , 166, 863-74	11.9	202
60	CNTRICS final task selection: long-term memory. <i>Schizophrenia Bulletin</i> , 2009 , 35, 197-212	1.3	44
59	Category expectation modulates baseline and stimulus-evoked activity in human inferotemporal cortex. <i>Brain Research</i> , 2009 , 1301, 89-99	3.7	80
58	The eyes have it: hippocampal activity predicts expression of memory in eye movements. <i>Neuron</i> , 2009 , 63, 592-9	13.9	245
57	The cognitive neuroscience of memory function and dysfunction in schizophrenia. <i>Biological Psychiatry</i> , 2008 , 64, 18-25	7.9	192
56	Perirhinal cortex supports encoding and familiarity-based recognition of novel associations. <i>Neuron</i> , 2008 , 59, 554-60	13.9	196
55	Medial temporal lobe activity predicts successful relational memory binding. <i>Journal of Neuroscience</i> , 2008 , 28, 116-24	6.6	228
54	The effects of unitization on familiarity-based source memory: testing a behavioral prediction derived from neuroimaging data. <i>Journal of Experimental Psychology: Learning Memory and Cognition</i> , 2008 , 34, 730-40	2.2	145
53	High-resolution multi-voxel pattern analysis of category selectivity in the medial temporal lobes. Hippocampus, 2008 , 18, 536-41	3.5	78

(2005-2007)

52	Working memory maintenance contributes to long-term memory formation: evidence from slow event-related brain potentials. <i>Cognitive, Affective and Behavioral Neuroscience</i> , 2007 , 7, 212-24	3.5	31	
51	Dissociable correlates of two classes of retrieval processing in prefrontal cortex. <i>NeuroImage</i> , 2007 , 35, 1663-73	7.9	35	
50	The dorsolateral prefrontal cortex contributes to successful relational memory encoding. <i>Journal of Neuroscience</i> , 2007 , 27, 5515-22	6.6	175	
49	Topography and dynamics of associative long-term memory retrieval in humans. <i>Journal of Cognitive Neuroscience</i> , 2007 , 19, 493-512	3.1	59	
48	Reinforcement learning signals predict future decisions. <i>Journal of Neuroscience</i> , 2007 , 27, 371-8	6.6	232	
47	Imaging recollection and familiarity in the medial temporal lobe: a three-component model. <i>Trends in Cognitive Sciences</i> , 2007 , 11, 379-86	14	833	
46	Reward expectation modulates feedback-related negativity and EEG spectra. NeuroImage, 2007, 35, 96	58 7 7.85	389	
45	Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. <i>Neuroscientist</i> , 2007 , 13, 280-91	7.6	425	
44	White Matter Changes Compromise Prefrontal Cortex Function in Healthy Elderly Individuals. <i>Journal of Cognitive Neuroscience</i> , 2006 , 18, 418-429	3.1	170	
43	Intact recollection memory in high-performing older adults: ERP and behavioral evidence. <i>Journal of Cognitive Neuroscience</i> , 2006 , 18, 33-47	3.1	107	
42	Exploring Human Memory Processes with Event-Related Potentials. <i>Clinical EEG and Neuroscience</i> , 2006 , 37, 285-285	2.3		
41	Neural mechanisms of expert skills in visual working memory. <i>Journal of Neuroscience</i> , 2006 , 26, 11187	-96 .6	107	
40	Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. <i>Journal of Neuroscience</i> , 2006 , 26, 916-25	6.6	268	
39	Working memory for visual objects: complementary roles of inferior temporal, medial temporal, and prefrontal cortex. <i>Neuroscience</i> , 2006 , 139, 277-89	3.9	163	
38	White matter changes compromise prefrontal cortex function in healthy elderly individuals. <i>Journal of Cognitive Neuroscience</i> , 2006 , 18, 418-29	3.1	96	
37	Content-specific activation during associative long-term memory retrieval. <i>NeuroImage</i> , 2005 , 27, 805-	16 ₇ .9	86	
36	Doubts about double dissociations between short- and long-term memory. <i>Trends in Cognitive Sciences</i> , 2005 , 9, 374-80	14	257	
35	Individual differences in extraversion and dopamine genetics predict neural reward responses. <i>Cognitive Brain Research</i> , 2005 , 25, 851-61		198	

34	Directing the mindle eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. <i>Current Opinion in Neurobiology</i> , 2005 , 15, 175-82	7.6	172
33	Different mechanisms of episodic memory failure in mild cognitive impairment. <i>Neuropsychologia</i> , 2005 , 43, 1688-97	3.2	98
32	Lag-sensitive repetition suppression effects in the anterior parahippocampal gyrus. <i>Hippocampus</i> , 2005 , 15, 557-61	3.5	59
31	Functional connectivity with the hippocampus during successful memory formation. <i>Hippocampus</i> , 2005 , 15, 997-1005	3.5	147
30	Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. <i>Journal of Cognitive Neuroscience</i> , 2005 , 17, 994-1010	3.1	214
29	Effects of unilateral prefrontal lesions on familiarity, recollection, and source memory. <i>Journal of Neuroscience</i> , 2005 , 25, 8333-7	6.6	112
28	Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. <i>Journal of Neuroscience</i> , 2004 , 24, 3917-25	6.6	275
27	The 3-D prefrontal cortex: Hemispheric asymmetries in prefrontal activity and their relation to memory retrieval processes. <i>Journal of Cognitive Neuroscience</i> , 2004 , 16, 903-7	3.1	21
26	Dissociable correlates of recollection and familiarity within the medial temporal lobes. <i>Neuropsychologia</i> , 2004 , 42, 2-13	3.2	537
25	Dissociable neural correlates for familiarity and recollection during the encoding and retrieval of pictures. <i>Cognitive Brain Research</i> , 2004 , 18, 255-72		163
24	Category-specific modulation of inferior temporal activity during working memory encoding and maintenance. <i>Cognitive Brain Research</i> , 2004 , 20, 37-45		158
23	Prefrontal activity associated with working memory and episodic long-term memory. <i>Neuropsychologia</i> , 2003 , 41, 378-89	3.2	344
22	Neural mechanisms for detecting and remembering novel events. <i>Nature Reviews Neuroscience</i> , 2003 , 4, 193-202	13.5	568
21	Neural correlates of person recognition. <i>Learning and Memory</i> , 2003 , 10, 253-60	2.8	72
20	Coding of objects in the prefrontal cortex in monkeys and humans. <i>Neuroscientist</i> , 2002 , 8, 6-11	7.6	14
19	Medial temporal lobe activity associated with active maintenance of novel information. <i>Neuron</i> , 2001 , 31, 865-73	13.9	329
18	Left anterior prefrontal activation increases with demands to recall specific perceptual information. <i>Journal of Neuroscience</i> , 2000 , 20, RC108	6.6	171
17	Neural correlates of memory retrieval and evaluation. <i>Cognitive Brain Research</i> , 2000 , 9, 209-22		111

LIST OF PUBLICATIONS

16	Frontal brain activity during episodic and semantic retrieval: insights from event-related potentials. Journal of Cognitive Neuroscience, 1999 , 11, 598-609	3.1	29
15	Frontal brain potentials during recognition are modulated by requirements to retrieve perceptual detail. <i>Neuron</i> , 1999 , 22, 605-13	13.9	119
14	Brain waves following remembered faces index conscious recollection. <i>Cognitive Brain Research</i> , 1999 , 7, 519-31		53
13	Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions. <i>International Journal of Psychophysiology</i> , 1996 , 23, 137-41	2.9	46
12	Human learning and memory112-130		
11	Representation of Task Structure in Human Hippocampus and Orbitofrontal Cortex		1
10	The hippocampus generalizes across memories that share item and context information		4
9	CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields		2
8	Theta phase synchronization between the human hippocampus and the prefrontal cortex supports learning of unexpected information		2
7	Space, Time and Episodic Memory: the Hippocampus is all over the Cognitive Map		2
6	Neural oscillations during conditional associative learning		2
5	Organization of cortico-hippocampal networks in the human brain		6
4	Building bridges: the hippocampus constructs narrative memories across distant events		3
3	Structured event memory: a neuro-symbolic model of event cognition		8
2	Map making: Constructing, combining, and inferring on abstract cognitive maps		2
1	A cortico-hippocampal scaffold for representing and recalling lifelike events		3