Yiting Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998898/publications.pdf Version: 2024-02-01

201575 395590 5,957 33 27 33 citations h-index g-index papers 33 33 33 4507 docs citations times ranked citing authors all docs

VITING SHI

#	Article	IF	CITATIONS
1	Integration of light and temperature signaling pathways in plants. Journal of Integrative Plant Biology, 2022, 64, 393-411.	4.1	25
2	The transcription factor <i>bZIP68</i> negatively regulates cold tolerance in maize. Plant Cell, 2022, 34, 2833-2851.	3.1	42
3	Reciprocal regulation between the negative regulator PP2CG1 phosphatase and the positive regulator OST1 kinase confers cold response in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2021, 63, 1568-1587.	4.1	19
4	The direct targets of CBFs: In cold stress response and beyond. Journal of Integrative Plant Biology, 2021, 63, 1874-1887.	4.1	68
5	The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. Plant Cell, 2021, 33, 3555-3573.	3.1	49
6	Natural variation in a type-A response regulator confers maize chilling tolerance. Nature Communications, 2021, 12, 4713.	5.8	63
7	HITAC-seq enables high-throughput cost-effective sequencing of plasmids and DNA fragments with identity. Journal of Genetics and Genomics, 2021, 48, 671-680.	1.7	2
8	The calcium transporter ANNEXIN1 mediates coldâ€induced calcium signaling and freezing tolerance in plants. EMBO Journal, 2021, 40, e104559.	3.5	99
9	The cold response regulator CBF1 promotes <i>Arabidopsis</i> hypocotyl growth at ambient temperatures. EMBO Journal, 2020, 39, e103630.	3.5	49
10	Plant abiotic stress response and nutrient use efficiency. Science China Life Sciences, 2020, 63, 635-674.	2.3	689
11	Molecular Regulation of Plant Responses to Environmental Temperatures. Molecular Plant, 2020, 13, 544-564.	3.9	346
12	Cold-Induced CBF–PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis. Molecular Plant, 2020, 13, 894-906.	3.9	128
13	BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis. Plant Cell, 2019, 31, tpc.00058.2019.	3.1	110
14	PUB25 and PUB26 Promote Plant Freezing Tolerance by Degrading the Cold Signaling Negative Regulator MYB15. Developmental Cell, 2019, 51, 222-235.e5.	3.1	105
15	Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist, 2019, 222, 1690-1704.	3.5	512
16	<scp>EGR</scp> 2 phosphatase regulates <scp>OST</scp> 1 kinase activity and freezing tolerance in <i>Arabidopsis</i> . EMBO Journal, 2019, 38, .	3.5	100
17	<scp>OST</scp> 1â€mediated <scp>BTF</scp> 3L phosphorylation positively regulates <scp>CBF</scp> s during plant cold responses. EMBO Journal, 2018, 37, .	3.5	134
18	Insights into the regulation of Câ€repeat binding factors in plant cold signaling. Journal of Integrative Plant Biology, 2018, 60, 780-795.	4.1	140

YITING SHI

#	Article	IF	CITATIONS
19	Molecular Regulation of CBF Signaling in Cold Acclimation. Trends in Plant Science, 2018, 23, 623-637.	4.3	508
20	The Antagonistic Action of Abscisic Acid and Cytokinin Signaling Mediates Drought Stress Response in Arabidopsis. Molecular Plant, 2018, 11, 970-982.	3.9	217
21	BZR1 Positively Regulates Freezing Tolerance via CBF-Dependent and CBF-Independent Pathways in Arabidopsis. Molecular Plant, 2017, 10, 545-559.	3.9	262
22	Long-chain base kinase1 affects freezing tolerance in Arabidopsis thaliana. Plant Science, 2017, 259, 94-103.	1.7	17
23	Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response. Molecular Cell, 2017, 66, 117-128.e5.	4.5	281
24	MPK3- and MPK6-Mediated ICE1 Phosphorylation Negatively Regulates ICE1 Stability and Freezing Tolerance in Arabidopsis. Developmental Cell, 2017, 43, 630-642.e4.	3.1	322
25	PIF3 is a negative regulator of the <i>CBF</i> pathway and freezing tolerance in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6695-E6702.	3.3	215
26	ABI4 represses the expression of typeâ€A <i>ARRs</i> to inhibit seed germination in Arabidopsis. Plant Journal, 2017, 89, 354-365.	2.8	100
27	The <i>cbfs</i> triple mutants reveal the essential functions of <i><scp>CBF</scp>s</i> in cold acclimation and allow the definition of <scp>CBF</scp> regulons in <i>Arabidopsis</i> . New Phytologist, 2016, 212, 345-353.	3.5	360
28	The Arabidopsis RCC1 Family Protein TCF1 Regulates Freezing Tolerance and Cold Acclimation through Modulating Lignin Biosynthesis. PLoS Genetics, 2015, 11, e1005471.	1.5	92
29	One SNP in COLD1 Determines Cold Tolerance during Rice Domestication. Journal of Genetics and Genomics, 2015, 42, 133-134.	1.7	10
30	COLD1: a cold sensor in rice. Science China Life Sciences, 2015, 58, 409-410.	2.3	15
31	Cold Signal Transduction and its Interplay with Phytohormones During Cold Acclimation. Plant and Cell Physiology, 2015, 56, 7-15.	1.5	274
32	The glutamate carboxypeptidase AMP 1 mediates abscisic acid and abiotic stress responses in A rabidopsis. New Phytologist, 2013, 199, 135-150.	3.5	35
33	Ethylene Signaling Negatively Regulates Freezing Tolerance by Repressing Expression of <i>CBF</i> and Type-A <i>ARR</i> Genes in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2578-2595.	3.1	569