
I Ontañón

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998842/publications.pdf

Version: 2024-02-01

ΙΟΝΤΑΔ+Δ3Ν

#	Article	IF	CITATIONS
1	Quantitative determination of the odorants of young red wines from different grape varieties. Journal of the Science of Food and Agriculture, 2000, 80, 1659-1667.	1.7	879
2	Analytical Characterization of the Aroma of Five Premium Red Wines. Insights into the Role of Odor Families and the Concept of Fruitiness of Wines. Journal of Agricultural and Food Chemistry, 2007, 55, 4501-4510.	2.4	487
3	Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. Journal of Chromatography A, 2002, 966, 167-177.	1.8	431
4	Chemical Characterization of the Aroma of Grenache Rosé Wines: Aroma Extract Dilution Analysis, Quantitative Determination, and Sensory Reconstitution Studies. Journal of Agricultural and Food Chemistry, 2002, 50, 4048-4054.	2.4	349
5	Fast analysis of important wine volatile compounds. Journal of Chromatography A, 2001, 923, 205-214.	1.8	231
6	Relationship between Varietal Amino Acid Profile of Grapes and Wine Aromatic Composition. Experiments with Model Solutions and Chemometric Study. Journal of Agricultural and Food Chemistry, 2002, 50, 2891-2899.	2.4	217
7	Prediction of the Wine Sensory Properties Related to Grape Variety from Dynamic-Headspace Gas Chromatographyâ~'Olfactometry Data. Journal of Agricultural and Food Chemistry, 2005, 53, 5682-5690.	2.4	183
8	An Assessment of the Role Played by Some Oxidation-Related Aldehydes in Wine Aroma. Journal of Agricultural and Food Chemistry, 2007, 55, 876-881.	2.4	183
9	Release and Formation of Varietal Aroma Compounds during Alcoholic Fermentation from Nonfloral Grape Odorless Flavor Precursors Fractions. Journal of Agricultural and Food Chemistry, 2007, 55, 6674-6684.	2.4	181
10	Clues about the Role of Methional As Character Impact Odorant of Some Oxidized Wines. Journal of Agricultural and Food Chemistry, 2000, 48, 4268-4272.	2.4	170
11	Simple strategy for the optimization of solid-phase extraction procedures through the use of solid–liquid distribution coefficients. Journal of Chromatography A, 2004, 1025, 147-156.	1.8	94
12	Modeling Quality of Premium Spanish Red Wines from Gas Chromatographyâ^'Olfactometry Data. Journal of Agricultural and Food Chemistry, 2009, 57, 7490-7498.	2.4	94
13	Analysis, Occurrence, and Potential Sensory Significance of Five Polyfunctional Mercaptans in White Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 10184-10194.	2.4	91
14	Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatography-pulsed flame photometric detection. Journal of Chromatography A, 2007, 1143, 8-15.	1.8	86
15	The Actual and Potential Aroma of Winemaking Grapes. Biomolecules, 2019, 9, 818.	1.8	75
16	Quantitative analysis of free and bonded forms of volatile sulfur compouds in wine. Basic methodologies and evidences showing the existence of reversible cation-complexed forms. Journal of Chromatography A, 2014, 1359, 8-15.	1.8	64
17	Release and Formation of Oxidation-Related Aldehydes during Wine Oxidation. Journal of Agricultural and Food Chemistry, 2016, 64, 608-617.	2.4	58
18	Analysis for wine C5–C8 aldehydes through the determination of their O-(2,3,4,5,6-pentafluorobenzyl)oximes formed directly in the solid phase extraction cartridge. Analytica Chimica Acta, 2004, 524, 201-206.	2.6	51

I Ontañón

#	Article	IF	CITATIONS
19	Histamine accumulation in dairy products: Microbial causes, techniques for the detection of histamineâ€producing microbiota, and potential solutions. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1481-1523.	5.9	50
20	Key Changes in Wine Aroma Active Compounds during Bottle Storage of Spanish Red Wines under Different Oxygen Levels. Journal of Agricultural and Food Chemistry, 2014, 62, 10015-10027.	2.4	48
21	Simultaneous determination of free and bonded forms of odor-active carbonyls in wine using a headspace solid phase microextraction strategy. Journal of Chromatography A, 2014, 1369, 33-42.	1.8	46
22	Formation and Accumulation of Acetaldehyde and Strecker Aldehydes during Red Wine Oxidation. Frontiers in Chemistry, 2018, 6, 20.	1.8	46
23	Gas chromatography-mass spectrometry strategies for the accurate and sensitive speciation of sulfur dioxide in wine. Journal of Chromatography A, 2017, 1504, 27-34.	1.8	43
24	Reductive off-odors in wines: Formation and release of H2S and methanethiol during the accelerated anoxic storage of wines. Food Chemistry, 2016, 199, 42-50.	4.2	42
25	Critical aspects of the determination of pentafluorobenzyl derivatives of aldehydes by gas chromatography with electron-capture or mass spectrometric detection. Journal of Chromatography A, 2006, 1122, 255-265.	1.8	39
26	Formation and Release of H ₂ S, Methanethiol, and Dimethylsulfide during the Anoxic Storage of Wines at Room Temperature. Journal of Agricultural and Food Chemistry, 2016, 64, 6317-6326.	2.4	39
27	Effect of aromatic precursor addition to wine fermentations carried out with different Saccharomyces species and their hybrids. International Journal of Food Microbiology, 2011, 147, 33-44.	2.1	38
28	The effects of copper fining on the wine content in sulfur off-odors and on their evolution during accelerated anoxic storage. Food Chemistry, 2017, 231, 212-221.	4.2	35
29	Elusive Chemistry of Hydrogen Sulfide and Mercaptans in Wine. Journal of Agricultural and Food Chemistry, 2018, 66, 2237-2246.	2.4	35
30	Modulating Fermentative, Varietal and Aging Aromas of Wine Using non-Saccharomyces Yeasts in a Sequential Inoculation Approach. Microorganisms, 2019, 7, 164.	1.6	35
31	Multidimensional gas chromatography–mass spectrometry determination of 3-alkyl-2-methoxypyrazines in wine and must. A comparison of solid-phase extraction and headspace solid-phase extraction methods. Journal of Chromatography A, 2009, 1216, 4040-4045.	1.8	34
32	Study of the effect of H 2 S, MeSH and DMS on the sensory profile of wine model solutions by Rate-All-That-Apply (RATA). Food Research International, 2016, 87, 152-160.	2.9	33
33	Use of new generation poly(styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption. Journal of Chromatography A, 2007, 1139, 36-44.	1.8	32
34	Micro-oxygenation does not eliminate hydrogen sulfide and mercaptans from wine; it simply shifts redox and complex-related equilibria to reversible oxidized species and complexed forms. Food Chemistry, 2018, 243, 222-230.	4.2	28
35	Selectivity and efficiency of different reversed-phase and mixed-mode sorbents to preconcentrate and isolate aroma molecules. Journal of Chromatography A, 2010, 1217, 1557-1566.	1.8	23
36	Determination of ppq-levels of alkylmethoxypyrazines in wine by stirbar sorptive extraction combined with multidimensional gas chromatography-mass spectrometry. Food Chemistry, 2018, 255, 235-241.	4.2	20

I Ontañón

#	Article	IF	CITATIONS
37	Development of a new strategy for studying the aroma potential of winemaking grapes through the accelerated hydrolysis of phenolic and aromatic fractions (PAFs). Food Research International, 2020, 127, 108728.	2.9	18
38	Effect of grape maturity on wine sensory and chemical features: The case of Moristel wines. LWT - Food Science and Technology, 2020, 118, 108848.	2.5	18
39	Grapevine and Wine Metabolomics-Based Guidelines for FAIR Data and Metadata Management. Metabolites, 2021, 11, 757.	1.3	16
40	Liquid Chromatography–Mass Spectrometry-Based Metabolomics for Understanding the Compositional Changes Induced by Oxidative or Anoxic Storage of Red Wines. Journal of Agricultural and Food Chemistry, 2020, 68, 13367-13379.	2.4	15
41	Gas chromatographic-sulfur chemiluminescent detector procedures for the simultaneous determination of free forms of volatile sulfur compounds including sulfur dioxide and for the determination of their metal-complexed forms. Journal of Chromatography A, 2019, 1596, 152-160.	1.8	14
42	Some clues about the changes in wine aroma composition associated to the maturation of "neutral― grapes. Food Chemistry, 2020, 320, 126610.	4.2	12
43	Analytical strategies for the determination of biogenic amines in dairy products. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 3612-3646.	5.9	12
44	Straightforward strategy for quantifying rotundone in wine at ngLâ~'1 level using solid-phase extraction and gas chromatography-quadrupole mass spectrometry. Occurrence in different varieties of spicy wines. Food Chemistry, 2016, 206, 267-273.	4.2	10
45	The Instrumental Analysis of Aroma-Active Compounds for Explaining the Flavor of Red Wines. , 2019, , 283-307.		9
46	Sensory Relevance of Strecker Aldehydes in Wines. Preliminary Studies of Its Removal with Different Type of Resins. Foods, 2021, 10, 1711.	1.9	7
47	Wine aroma vectors and sensory attributes. , 2022, , 3-39.		7
48	The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 2021, 9, 100116.	1.8	6
49	Application of a new sampling device for determination of volatile compounds released during heating olive and sunflower oil: sensory evaluation of those identified compounds. European Food Research and Technology, 2013, 236, 1031-1040.	1.6	5
50	The diverse effects of yeast on the aroma of non-sulfite added white wines throughout aging. LWT - Food Science and Technology, 2022, 158, 113111.	2.5	5
51	A modified commercial gas chromatograph for the continuous monitoring of the thermal degradation of sunflower oil and off-line solid phase extraction gas–chromatography–mass spectrometry characterization of released volatiles. Journal of Chromatography A, 2015, 1388, 52-59.	1.8	4
52	Air inside a dishwasher: Odour characterization and strategy for measuring odour changes. Flavour and Fragrance Journal, 2019, 34, 75-89.	1.2	3
53	Maturation of Moristel in Different Vineyards: Amino Acid and Aroma Composition of Mistelles and Wines with Particular Emphasis in Strecker Aldehydes. Foods, 2022, 11, 958.	1.9	2