Xianping Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/39987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrogenation aging mechanisms of a porous composite with polyethylene as matrix and 1,4-bis(phenylethynyl)benzene as hydrogen getter. Materials Today Communications, 2021, 29, 102876.	1.9	1
2	Polymer Framework with Continuous Pores for Hydrogen Getters: Molding and a Boost in Getter Rate. ACS Applied Polymer Materials, 2020, 2, 3243-3250.	4.4	12
3	Metal–Organic Framework-Assisted Construction of TiO ₂ /Co ₃ O ₄ Highly Ordered Necklace-like Heterostructures for Enhanced Ethanol Vapor Sensing Performance. Langmuir, 2018, 34, 14577-14585.	3.5	42
4	Non-isothermal crystallization of copper-containing composite based on polymer alloy of poly(ethylene oxide) and polyethylene. Thermochimica Acta, 2018, 670, 61-70.	2.7	5
5	Role of poly(ethylene oxide) in copper-containing composite used for intrauterine contraceptive devices. Journal of Materials Science: Materials in Medicine, 2018, 29, 92.	3.6	2
6	Alterations in the endometrium of rats, rabbits, and Macaca mulatta that received an implantation of copper/low-density polyethylene nanocomposite. International Journal of Nanomedicine, 2014, 9, 1127.	6.7	8
7	Anti-aging properties of the Cu/LDPE composite for intrauterine contraceptive devices. Composites Science and Technology, 2014, 90, 139-146.	7.8	9
8	Preparation and cupric ion release behavior of Cu/LDPE porous composites with tunable pore morphology for intrauterine devices. Materials Science and Engineering C, 2013, 33, 2800-2807.	7.3	3
9	A porous Cu/LDPE composite for copper-containing intrauterine contraceptive devices. Acta Biomaterialia, 2012, 8, 897-903.	8.3	20
10	Indomethacin/Cu/LDPE porous composite for medicated copper intrauterine devices with controlled release performances. Composites Science and Technology, 2012, 72, 428-434.	7.8	13
11	Nonisothermal crystallization behavior of Cu/LDPE nanocomposites prepared by solution blending method. Journal of Applied Polymer Science, 2012, 124, 3348-3356.	2.6	3
12	Study on the mechanical properties of Cu/LDPE composite IUDs. Contraception, 2011, 83, 255-262.	1.5	18
13	An approach to give prospective life-span of the copper/low-density-polyethylene nanocomposite intrauterine device. Journal of Materials Science: Materials in Medicine, 2011, 22, 1773-1781.	3.6	19
14	Will ethylene oxide sterilization influence the application of novel Cu/LDPE nanocomposite intrauterine devices?. Contraception, 2009, 79, 65-70.	1.5	11
15	A Method of Feature Extraction on Recovery Curves for Fast Recognition Application With Metal Oxide Gas Sensor Array. IEEE Sensors Journal, 2009, 9, 1705-1710.	4.7	13
16	Effect of implanted Cu/low-density polyethylene nanocomposite on the morphology of endometrium in the mouse. Fertility and Sterility, 2007, 88, 472-478.	1.0	20
17	The forces imposed by the novel T-shape Cu/LDPE nanocomposite intrauterine devices on the simulated uterine cavity. Contraception, 2007, 76, 326-330.	1.5	11
18	Cupric ion release controlled by copper/low-density polyethylene nanocomposite in simulated uterine solution. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 80B, 220-225.	3.4	16

XIANPING XIA

#	Article	IF	CITATIONS
19	Preparation, structure and thermal stability of Cu/LDPE nanocomposites. Materials Chemistry and Physics, 2006, 95, 122-129.	4.0	82
20	Non-isothermal crystallization behavior of low-density polyethylene/copper nanocomposites. Thermochimica Acta, 2005, 427, 129-135.	2.7	40
21	Corrosion behavior of copper/LDPE nanocomposites in simulated uterine solution. Biomaterials, 2005, 26, 2671-2676.	11.4	71
22	Research on Cu2+ transformations of Cu and its oxides particles with different sizes in the simulated uterine solution. Corrosion Science, 2005, 47, 1039-1047.	6.6	36