
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of lipid heterogeneity on model human brain lipid membranes. Soft Matter, 2021, 17, 126-135.	1.2	14
2	On the microscopic origin of the cryoprotective effect in lysine solutions. Physical Chemistry Chemical Physics, 2020, 22, 6919-6927.	1.3	7
3	Tuning molecular dynamics by hydration and confinement: antiplasticizing effect of water in hydrated prilocaine nanoclusters. Physical Chemistry Chemical Physics, 2019, 21, 15576-15583.	1.3	9
4	On the hydration of DOPE in solution. Journal of Chemical Physics, 2019, 150, 115104.	1.2	10
5	Role of Water in Sucrose, Lactose, and Sucralose Taste: The Sweeter, The Wetter?. ACS Omega, 2019, 4, 22392-22398.	1.6	22
6	Reply to the â€~Comment on "On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility― <i>Phys. Chem. Chem. Phys.</i> , 2018, 20 , DOI: 10.1039/C7CP03698A'. Physical Chemistry Chemical Physics, 2018, 20, 2116-2119.	1.3	0
7	Proline and Water Stabilization of a Universal Two-Step Folding Mechanism for Î ² -Turn Formation in Solution. Journal of the American Chemical Society, 2018, 140, 7301-7312.	6.6	9
8	Trehalose in Water Revisited. Journal of Physical Chemistry B, 2018, 122, 7365-7374.	1.2	26
9	On the solvation of the phosphocholine headgroup in an aqueous propylene glycol solution. Journal of Chemical Physics, 2018, 148, 135102.	1.2	7
10	On the hydration structure of the pro-drug GPG-NH2 and its derivatives. Chemical Physics Letters, 2018, 706, 228-236.	1.2	1
11	Hydrogen Bond Length as a Key To Understanding Sweetness. Journal of Physical Chemistry Letters, 2018, 9, 3667-3672.	2.1	25
12	Salt Interactions in Solution Prevent Direct Association of Urea with a Peptide Backbone. Journal of Physical Chemistry B, 2017, 121, 1866-1876.	1.2	12
13	On the structure of prilocaine in aqueous and amphiphilic solutions. Physical Chemistry Chemical Physics, 2017, 19, 12665-12673.	1.3	4
14	On the hydration and conformation of cocaine in solution. Chemical Physics Letters, 2017, 676, 58-64.	1.2	4
15	Structure-activity relationships in carbohydrates revealed by their hydration. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1486-1493.	1.1	22
16	Glucose and Mannose: A Link between Hydration and Sweetness. Journal of Physical Chemistry B, 2017, 121, 7771-7776.	1.2	21
17	On the structure of an aqueous propylene glycol solution. Journal of Chemical Physics, 2016, 145, 224504.	1.2	22
18	On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility. Physical Chemistry Chemical Physics, 2016, 18, 23006-23016.	1.3	18

#	Article	IF	CITATIONS
19	The solvation structure of alprazolam. Physical Chemistry Chemical Physics, 2016, 18, 22416-22425.	1.3	7
20	Comparative atomic-scale hydration of the ceramide and phosphocholine headgroup in solution and bilayer environments. Journal of Chemical Physics, 2016, 144, 225101.	1.2	9
21	Atomic scale insights into urea–peptide interactions in solution. Physical Chemistry Chemical Physics, 2016, 18, 3862-3870.	1.3	23
22	On the atomic structure of cocaine in solution. Physical Chemistry Chemical Physics, 2016, 18, 991-999.	1.3	23
23	Solvation and Hydration of the Ceramide Headgroup in a Non-Polar Solution. Journal of Physical Chemistry B, 2015, 119, 128-139.	1.2	23
24	Amphipathic Solvation of Indole: Implications for the Role of Tryptophan in Membrane Proteins. Journal of Physical Chemistry B, 2015, 119, 5979-5987.	1.2	34
25	Conformation and interactions of dopamine hydrochloride in solution. Journal of Chemical Physics, 2015, 142, 014502.	1.2	16
26	Short-Range Interactions of Concentrated Proline in Aqueous Solution. Journal of Physical Chemistry B, 2014, 118, 14267-14277.	1.2	31
27	Modulation of Dipalmitoylphosphatidylcholine Monolayers by Dimethyl Sulfoxide. Langmuir, 2014, 30, 8803-8811.	1.6	29
28	Water-Peptide Site-Specific Interactions: A Structural Study on the Hydration of Glutathione. Biophysical Journal, 2014, 106, 1701-1709.	0.2	40
29	On the structure of water and chloride ion interactions with a peptide backbone in solution. Physical Chemistry Chemical Physics, 2013, 15, 21023.	1.3	21
30	On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide. Chemical Physics, 2013, 410, 31-36.	0.9	17
31	Water Mediation Is Essential to Nucleation of βâ€Turn Formation in Peptide Folding Motifs. Angewandte Chemie - International Edition, 2013, 52, 13091-13095.	7.2	29
32	Structural Evidence for Inter-Residue Hydrogen Bonding Observed for Cellobiose in Aqueous Solution. PLoS ONE, 2012, 7, e45311.	1.1	35
33	Alteration of Water Structure by Peptide Clusters Revealed by Neutron Scattering in the Small-Angle Region (below 1ÂÃâ~'1). Biophysical Journal, 2012, 103, 1518-1524.	0.2	5
34	On the solvation structure of dimethylsulfoxide/water around the phosphatidylcholine head group in solution. Journal of Chemical Physics, 2011, 135, 225105.	1.2	29
35	On the hydration of the phosphocholine headgroup in aqueous solution. Journal of Chemical Physics, 2010, 133, 145103.	1.2	76
36	Water and Trehalose: How Much Do They Interact with Each Other?. Journal of Physical Chemistry B, 2010, 114, 4904-4908.	1.2	80

#	Article	IF	CITATIONS
37	Water structure around dipeptides in aqueous solutions. European Biophysics Journal, 2008, 37, 647-655.	1.2	30
38	Chargeâ€Based Interactions between Peptides Observed as the Dominant Force for Association in Aqueous Solution. Angewandte Chemie - International Edition, 2008, 47, 9059-9062.	7.2	39
39	Water structure around trehalose. Chemical Physics, 2008, 345, 159-163.	0.9	54
40	Correlated atomic motions in liquid deuterium fluoride studied by coherent quasielastic neutron scattering. Journal of Chemical Physics, 2007, 126, 234509.	1.2	9
41	Observation of Fractional Stokes-Einstein Behavior in the Simplest Hydrogen-Bonded Liquid. Physical Review Letters, 2007, 98, 077801.	2.9	40
42	Intrinsic magnetic order inCs2AgF4detected by muon-spin relaxation. Physical Review B, 2007, 75, .	1.1	22
43	Structure of Aqueous Proline via Parallel Tempering Molecular Dynamics and Neutron Diffraction. Journal of Physical Chemistry B, 2007, 111, 8210-8222.	1.2	23
44	Investigations on the structure of dimethyl sulfoxide and acetone in aqueous solution. Journal of Chemical Physics, 2007, 127, 174515.	1.2	62
45	Structure and Hydration ofl-Proline in Aqueous Solutions. Journal of Physical Chemistry B, 2007, 111, 4568-4580.	1.2	70
46	The Hydration of the Neurotransmitter Acetylcholine in Aqueous Solution. Biophysical Journal, 2006, 91, 2371-2380.	0.2	42
47	Structural Studies on the Hydration ofl-Glutamic Acid in Solution. Journal of Physical Chemistry B, 2006, 110, 21251-21258.	1.2	49
48	Orientational correlations in liquid acetone and dimethyl sulfoxide: A comparative study. Journal of Chemical Physics, 2006, 124, 074502.	1.2	68
49	Magnetic behaviour of layered Ag(II) fluorides. Nature Materials, 2006, 5, 561-565.	13.3	82
50	Evidence of the Presence of Opticlike Collective Modes in a Liquid from Neutron Scattering Experiments. Physical Review Letters, 2006, 96, 235501.	2.9	11
51	Structure of 2 molar NaOH in aqueous solution from neutron diffraction and empirical potential structure refinement. Physical Review B, 2006, 74, .	1.1	75
52	Atomic pair distribution function analysis of materials containing crystalline and amorphous phases. Zeitschrift Für Kristallographie, 2005, 220, .	1.1	27
53	On the variation of the structure of liquid deuterium fluoride with temperature. Journal of Chemical Physics, 2004, 121, 6448-6455.	1.2	12
54	On the Structure of Liquid Hydrogen Fluoride. Angewandte Chemie - International Edition, 2004, 43, 1952-1955.	7.2	71

#	Article	IF	CITATIONS
55	On the Structure of Liquid Hydrogen Fluoride ChemInform, 2004, 35, no.	0.1	Ο
56	A structural comparison of supercooled water and intermediate density amorphous ices. Molecular Physics, 2004, 102, 2007-2014.	0.8	18
57	Local atomic structure of Fontainebleau sandstone: Evidence for an amorphous phase?. Geophysical Research Letters, 2004, 31, .	1.5	18
58	Sample containment for neutron and high-energy x-ray scattering studies of hydrogen fluoride and related molecular species. Review of Scientific Instruments, 2003, 74, 4410-4417.	0.6	12
59	On the structure of boron trifluoride in liquid and supercritical phase investigated with neutron diffraction. Journal of Chemical Physics, 2003, 119, 6671-6679.	1.2	2
60	The structure of liquid fluorosulfuric acid investigated by neutron diffraction. Journal of Chemical Physics, 2002, 117, 3816-3821.	1.2	11