Jacob A Wrubel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998356/publications.pdf

Version: 2024-02-01

840776 839539 19 350 11 18 citations h-index g-index papers 19 19 19 266 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The effect of catholyte and catalyst layer binders on CO2 electroreduction selectivity. Chem Catalysis, 2022, 2, 400-421.	6.1	9
2	Exploring the Impacts of Conditioning on Proton Exchange Membrane Electrolyzers by <i>In Situ</i> Visualization and Electrochemistry Characterization. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9002-9012.	8.0	20
3	<i>In Situ</i> Determination of Speciation and Local Structure of NaCl–SrCl ₂ and LiF–ZrF ₄ Molten Salts. Journal of Physical Chemistry B, 2022, 126, 1539-1550.	2.6	5
4	Tuning Catalyst Activation and Utilization Via Controlled Electrode Patterning for Lowâ€Loading and Highâ€Efficiency Water Electrolyzers. Small, 2022, 18, e2107745.	10.0	30
5	Estimating the energy requirement for hydrogen production in proton exchange membrane electrolysis cells using rapid operando hydrogen crossover analysis. International Journal of Hydrogen Energy, 2022, 47, 28244-28253.	7.1	6
6	Modeling the performance and faradaic efficiency of solid oxide electrolysis cells using doped barium zirconate perovskite electrolytes. International Journal of Hydrogen Energy, 2021, 46, 11511-11522.	7.1	16
7	A comprehensive modeling method for proton exchange membrane electrolyzer development. International Journal of Hydrogen Energy, 2021, 46, 17627-17643.	7.1	70
8	Mathematical modeling of novel porous transport layer architectures for proton exchange membrane electrolysis cells. International Journal of Hydrogen Energy, 2021, 46, 25341-25354.	7.1	21
9	Insights into the rapid two-phase transport dynamics in different structured porous transport layers of water electrolyzers through high-speed visualization. Journal of Power Sources, 2021, 516, 230641.	7.8	39
10	Modeling Electrokinetics of Oxygen Electrodes in Solid Oxide Electrolyzer Cells. Journal of the Electrochemical Society, 2021, 168, 114510.	2.9	5
11	High-Performance Bipolar Membrane Development for Improved Water Dissociation. ACS Applied Polymer Materials, 2020, 2, 4559-4569.	4.4	45
12	Modeling Water Electrolysis in Bipolar Membranes. Journal of the Electrochemical Society, 2020, 167, 114502.	2.9	25
13	Anion Exchange Membrane Fuel Cell Performance in the Presence of Carbon Dioxide: An Investigation into the Self-Purging Mechanism. Journal of the Electrochemical Society, 2019, 166, F810-F820.	2.9	14
14	Predicting the Effects of Carbon Dioxide on the Conductivity of Electrospun Anion Exchange Membranes. Journal of the Electrochemical Society, 2019, 166, F1047-F1054.	2.9	4
15	Simultaneous threeâ€dimensional elemental mapping of Hollandite and Pyrochlore material phases in ceramic waste form materials. Journal of the American Ceramic Society, 2019, 102, 5620-5631.	3.8	O
16	Anion Exchange Membrane Ionic Conductivity in the Presence of Carbon Dioxide under Fuel Cell Operating Conditions. Journal of the Electrochemical Society, 2017, 164, F1063-F1073.	2.9	14
17	Threeâ€dimensional mapping of crystalline ceramic waste form materials. Journal of the American Ceramic Society, 2017, 100, 3722-3735.	3.8	6
18	Anion Exchange Membrane Ionic Conductivity in the Presence of Carbon Dioxide under Fuel Cell Operating Conditions. ECS Transactions, 2017, 80, 989-1003.	0.5	4

#	Article	lF	CITATIONS
19	Thermal stability of specialty optical fiber coatings. Journal of Thermal Analysis and Calorimetry, 2016, 124, 1411-1423.	3.6	17