MarÃ-a José Salar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A critical review on microalgae as an alternative source for bioenergy production: A promising low cost substrate for microbial fuel cells. Fuel Processing Technology, 2016, 154, 104-116.	3.7	159
2	Developments in microbial fuel cell modeling. Chemical Engineering Journal, 2015, 271, 50-60.	6.6	138
3	Ionic liquid technology to recover volatile organic compounds (VOCs). Journal of Hazardous Materials, 2017, 321, 484-499.	6.5	121
4	Analysis of optimal conditions for biodiesel production from Jatropha oil in supercritical methanol: Quantification of thermal decomposition degree and analysis of FAMEs. Journal of Supercritical Fluids, 2016, 112, 1-6.	1.6	44
5	On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells. Particuology, 2017, 34, 147-155.	2.0	41
6	Long-term bio-power of ceramic microbial fuel cells in individual and stacked configurations. Bioelectrochemistry, 2020, 133, 107459.	2.4	41
7	Influence of the preparation method of MnO2-based cathodes on the performance of single-chamber MFCs using wastewater. Separation and Purification Technology, 2016, 171, 174-181.	3.9	34
8	Study of the effects of ionic liquid-modified cathodes and ceramic separators on MFC performance. Chemical Engineering Journal, 2016, 291, 317-324.	6.6	27
9	Development and characterization of a new embedded ionic liquid based membrane-cathode assembly for its application in single chamber microbial fuel cells. Energy, 2015, 93, 1748-1757.	4.5	22
10	Effect of iron oxide content and microstructural porosity on the performance of ceramic membranes as microbial fuel cell separators. Electrochimica Acta, 2021, 367, 137385.	2.6	20
11	Two-stage mesophilic anaerobic–thermophilic digestion for sludge sanitation to obtain advanced treated sludge. Chemical Engineering Journal, 2013, 230, 59-63.	6.6	19
12	Impact of Inoculum Type on the Microbial Community and Power Performance of Urine-Fed Microbial Fuel Cells. Microorganisms, 2020, 8, 1921.	1.6	18
13	Ferroelectric LiTaO ₃ as novel photoâ€electrocatalyst in microbial fuel cells. Environmental Progress and Sustainable Energy, 2017, 36, 1568-1574.	1.3	17
14	Mixed transition metal-manganese oxides as catalysts in MFCs for bioenergy generation from industrial wastewater. Biochemical Engineering Journal, 2019, 151, 107310.	1.8	17
15	Discovering Low Toxicity Ionic Liquids for Saccharomyces cerevisiae by Using the Agar Well Diffusion Test. Processes, 2020, 8, 1163.	1.3	17
16	Keys for Bioethanol Production Processes by Fermentation and Ionic Liquid Extraction. ACS Sustainable Chemistry and Engineering, 2017, 5, 6986-6993.	3.2	16
17	Treatment of Mineral Oil Refinery Wastewater in Microbial Fuel Cells Using Ionic Liquid Based Separators. Applied Sciences (Switzerland), 2018, 8, 438.	1.3	15
18	Influence of ionic liquid composition on the stability of polyvinyl chlorideâ€based ionic liquid inclusion membranes in aqueous solution. AICHE Journal, 2017, 63, 770-780.	1.8	14

MarÃa José Salar

#	Article	IF	CITATIONS
19	Algerian Carob Tree Products: A Comprehensive Valorization Analysis and Future Prospects. Sustainability, 2018, 10, 90.	1.6	14
20	Evaluation of Ionic Liquids as In Situ Extraction Agents during the Alcoholic Fermentation of Carob Pod Extracts. Fermentation, 2019, 5, 90.	1.4	7
21	Synthesis of low cost organometallic-type catalysts for their application in microbial fuel cell technology. Environmental Technology (United Kingdom), 2019, 40, 2425-2435.	1.2	5
22	Preparation of new ferroelectric Li _{0.95} Ta _{0.57} Nb _{0.38} Cu _{0.15} O ₃ materials as photocatalysts in microbial fuel cells. Canadian Journal of Chemical Engineering, 2018, 96, 1656-1662.	0.9	4
23	Electrocodeposition method to synthesize lowâ€cost cathodes based on inert carriers for bioenergy production and wastewater treatment in microbial fuel cells. Environmental Progress and Sustainable Energy, 2019, 38, 13083.	1.3	1