
Saulius Grigalevicius

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3998209/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3-(9-Carbazolyl)carbazoles and 3,6-Di(9-carbazolyl)carbazoles as Effective Host Materials for Efficient Blue Organic Electrophosphorescence. Advanced Materials, 2007, 19, 862-866.	21.0	439
2	Chemoselective Assembly and Immunological Evaluation of Multiepitopic Glycoconjugates Bearing Clustered Tn Antigen as Synthetic Anticancer Vaccines. Bioconjugate Chemistry, 2005, 16, 1149-1159.	3.6	105
3	3,6(2,7),9-Substituted carbazoles as electroactive amorphous materials for optoelectronics. Synthetic Metals, 2006, 156, 1-12.	3.9	77
4	3,6-Di(N-diphenylamino)-9-phenylcarbazole and its methyl-substituted derivative as novel hole-transporting amorphous molecular materials. Synthetic Metals, 2002, 128, 127-131.	3.9	70
5	Synthesis and properties of poly(3,9-carbazole) and low-molar-mass glass-forming carbazole compounds. Polymer, 2002, 43, 2603-2608.	3.8	70
6	Indolo[3,2-b]carbazole-based functional derivatives as materials for light emitting diodes. Dyes and Pigments, 2010, 85, 183-188.	3.7	66
7	Structure Properties Relationship of Donor–Acceptor Derivatives of Triphenylamine and 1,8-Naphthalimide. Journal of Physical Chemistry C, 2012, 116, 14811-14819.	3.1	66
8	Impact of intramolecular twisting and exciton migration on emission efficiency of multifunctional fluorene-benzothiadiazole-carbazole compounds. Journal of Chemical Physics, 2011, 134, 204508.	3.0	53
9	Sky-blue aggregation-induced emission molecules for non-doped organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6054-6060.	5.5	49
10	Highly efficient blue organic light-emitting diode with an oligomeric host having high triplet-energy and high electron mobility. Journal of Materials Chemistry, 2011, 21, 9546.	6.7	46
11	A wet- and dry-process feasible carbazole type host for highly efficient phosphorescent OLEDs. Journal of Materials Chemistry C, 2015, 3, 12297-12307.	5.5	43
12	Solution-processable naphthalene and phenyl substituted carbazole core based hole transporting materials for efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 9854-9864.	5.5	43
13	Synthesis and characterization of new carbazole/fluorene-based derivatives for blue-light-emitting devices. Journal of Polymer Science Part A, 2006, 44, 5987-5994.	2.3	40
14	Polycarbazole-based networks made by photo-crosslinking for hole transporting layers of OLED devices. Organic Electronics, 2011, 12, 2253-2257.	2.6	39
15	Enabling high-efficiency organic light-emitting diodes with a cross-linkable electron confining hole transporting material. Organic Electronics, 2015, 24, 254-262.	2.6	39
16	Efficient red phosphorescent OLEDs employing carbazole-based materials as the emitting host. Dyes and Pigments, 2015, 122, 257-263.	3.7	37
17	Hole-transporting molecular glasses based on carbazole and diphenylamine moieties. Materials Chemistry and Physics, 2001, 72, 395-400.	4.0	35
18	3,6-Diaryl substituted 9-alkylcarbazoles as hole transporting materials for various organic light emitting devices. Dyes and Pigments, 2014, 106, 1-6.	3.7	35

#	Article	IF	CITATIONS
19	Photoconductive molecular glasses consisting of twin molecules. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 154, 161-167.	3.9	34
20	Carbazolyl-substituted triphenyldiamine derivatives as novel photoconductive amorphous molecular materials. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 249-252.	3.9	34
21	Cross-linkable aromatic amines as materials for insoluble hole-transporting layers in light-emitting devices. Synthetic Metals, 2008, 158, 213-218.	3.9	34
22	Hole-transporting glass-forming indolo[3,2-b]carbazole-based diepoxy monomer and polymers. European Polymer Journal, 2009, 45, 410-417.	5.4	34
23	Phenanthro[9,10-d]imidazole based new host materials for efficient red phosphorescent OLEDs. Dyes and Pigments, 2017, 137, 615-621.	3.7	34
24	Excitation Energy Transfer from Semi-Conducting Polymer Nanoparticles to Surface-Bound Fluorescent Dyes. Macromolecular Rapid Communications, 2006, 27, 200-202.	3.9	32
25	New Carbazole-Based Copolymers as Amorphous Hole-Transporting Materials for Multilayer Light-Emitting Diodes. Macromolecular Chemistry and Physics, 2007, 208, 349-355.	2.2	32
26	Synthesis and properties of the polymers containing 3,3′-dicarbazyl units in the main chain and their model compounds. Polymer, 2002, 43, 5693-5697.	3.8	31
27	Photoconductive, photoluminescent and glass-forming 6,6′-di(N-diphenylamino)-9,9′-dialkyl-3,3′-bicarbazoles. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 187-191.	3.9	31
28	Phenotiazinyl-based hydrazones as new hole-transporting materials for electrophotographic photoreceptors. Synthetic Metals, 2006, 156, 926-931.	3.9	31
29	Hole-transporting [3,3â€2]bicarbazolyl-based polymers and well-defined model compounds. European Polymer Journal, 2006, 42, 2254-2260.	5.4	31
30	Phenothiazinyl-containing aromatic amines as novel amorphous molecular materials for optoelectronics. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 1-6.	3.9	30
31	Synthesis and properties of oxetane monomers and oligomers with electro-active pendent groups. Polymer International, 2008, 57, 1036-1041.	3.1	30
32	Well-defined [3,3′]bicarbazolyl-based electroactive compounds for optoelectronics. Synthetic Metals, 2008, 158, 383-390.	3.9	29
33	3,6-Di(diphenylamino)-9-alkylcarbazoles: novel hole-transporting molecular glasses. Synthetic Metals, 2001, 122, 311-314.	3.9	26
34	Incorporating a hole-transport material into the emissive layer of solid-state light-emitting electrochemical cells to improve device performance. Physical Chemistry Chemical Physics, 2015, 17, 17253-17259.	2.8	25
35	Wet-process feasible novel carbazole-type molecular host for high efficiency phosphorescent organic light emitting diodes. Journal of Materials Chemistry C, 2014, 2, 8707-8714.	5.5	20
36	Triplet states and energy back transfer of carbazole derivatives. RSC Advances, 2015, 5, 59960-59969.	3.6	20

#	Article	IF	CITATIONS
37	Fluorene based amorphous hole transporting materials for solution processed organic light-emitting diodes. Organic Electronics, 2020, 79, 105633.	2.6	20
38	Solution-processable phenothiazine and phenoxazine substituted fluorene cored nanotextured hole transporting materials for achieving high-efficiency OLEDs. Journal of Materials Chemistry C, 2022, 10, 3593-3608.	5.5	20
39	High light-quality OLEDs with a wet-processed single emissive layer. Scientific Reports, 2018, 8, 7133.	3.3	19
40	Naphthyl substituted triphenylamine derivatives as hole transporting materials for efficient red PhOLEDs. Dyes and Pigments, 2019, 162, 196-202.	3.7	19
41	Aryl substituted 9-(2,2-diphenylvinyl)carbazoles as efficient materials for hole transporting layers of OLEDs. Synthetic Metals, 2011, 161, 2466-2470.	3.9	18
42	A thermally cross-linkable hole-transporting small-molecule for efficient solution-processed organic light emitting diodes. Organic Electronics, 2019, 73, 94-101.	2.6	18
43	Well defined carbazol-3,9-diyl based oligomers with diphenylamino end-cap as novel amorphous molecular materials for optoelectronics. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174, 125-129.	3.9	16
44	Phenoxazine and N-phenyl-1-naphtylamine-based enamines as hole-transporting glass-forming materials. Synthetic Metals, 2009, 159, 1014-1018.	3.9	16
45	Electronic and thermal properties of compounds bearing diimide, azomethine and triphenylamine units. Optical Materials, 2014, 37, 543-551.	3.6	16
46	Aggregation-induced emission tetraphenylethene type derivatives for blue tandem organic light-emitting diodes. Organic Electronics, 2019, 67, 279-286.	2.6	16
47	Polyethers containing 2-phenylindol-1-yl moieties as host materials for light emitting diodes. Synthetic Metals, 2010, 160, 1793-1796.	3.9	15
48	3-Aryl substituted 9-alkylcarbazoles as tailored building blocks for hole transporting materials of OLEDs. Synthetic Metals, 2012, 162, 1079-1083.	3.9	15
49	Differently linked fluorene-carbazole triads for light amplification. Dyes and Pigments, 2015, 123, 370-379.	3.7	15
50	Fluorescence quenching of indolo[3,2-b]carbazole compounds by conformational motions of attached substituents. Dyes and Pigments, 2016, 133, 120-126.	3.7	15
51	Indolyl-substituted carbazole derivatives as amorphous electro-active materials for optoelectronics. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 38-42.	3.9	14
52	Carbazole-based aromatic amines having oxetanyl groups as materials for hole transporting layers. Synthetic Metals, 2007, 157, 529-533.	3.9	13
53	Naphthyl or pyrenyl substituted 2-phenylcarbazoles as hole transporting materials for organic light-emitting diodes. Dyes and Pigments, 2017, 136, 302-311.	3.7	13
54	9,9′-bis(2,2-diphenylvinyl)[3,3′]bicarbazole as low cost efficient hole transporting material for application in red PhOLEDs. Dyes and Pigments, 2018, 152, 100-104.	3.7	13

SAULIUS GRIGALEVICIUS

#	Article	IF	CITATIONS
55	Indole and phenylenediamine based enamines as amorphous hole-transporting materials. Synthetic Metals, 2010, 160, 162-168.	3.9	12
56	Carbazole- and phenylindole-based new host materials for phosphorescent organic light emitting diodes. Optical Materials, 2013, 35, 604-608.	3.6	12
57	Crosslinkable hole-transporting small molecule as a mixed host for efficient solution-processed red organic light emitting diodes. Thin Solid Films, 2018, 660, 956-960.	1.8	12
58	Synthesis and cationic photocuring of new carbazole monomers. European Polymer Journal, 2007, 43, 380-387.	5.4	11
59	Electroactive polymers containing pendant harmane, phenoxazine or carbazole rings as host materials for OLEDs. Dyes and Pigments, 2014, 108, 121-125.	3.7	10
60	Phenylvinyl-Substituted Carbazole Twin Compounds as Efficient Materials for the Charge-Transporting Layers of OLED Devices. Journal of Electronic Materials, 2015, 44, 4006-4011.	2.2	10
61	2,7(3,6)-Diaryl(arylamino)-substituted Carbazoles as Components of OLEDs: A Review of the Last Decade. Materials, 2021, 14, 6754.	2.9	10
62	Electroâ€active oligomers containing pendent carbazolyl or indolyl groups as host materials for OLEDs. Journal of Applied Polymer Science, 2011, 122, 908-913.	2.6	9
63	3,7-Diaryl substituted 10-butylphenoxazines as new hole transporting materials for organic light emitting devices. Dyes and Pigments, 2017, 137, 208-213.	3.7	8
64	Phenoxazines having various electron acceptor or donor fragments as new host materials for green phosphorescent OLEDs. Dyes and Pigments, 2020, 172, 107839.	3.7	8
65	Triphenylethene-carbazole-based molecules for the realization of blue and white aggregation-induced emission OLEDs with high luminance. Organic Electronics, 2022, 108, 106571.	2.6	8
66	Synthesis and properties of polymers containing aromatic amino groups in the main chain and their glass-forming model compounds. European Polymer Journal, 2004, 40, 1645-1650.	5.4	7
67	Well defined carbazole-based hole-transporting amorphous molecular materials. Synthetic Metals, 2006, 156, 46-50.	3.9	7
68	Syntheses and characterization of 6,6′-diaryl-9,9′-dialkyl[3,3′]bicarbazoles as materials for electroluminescent devices. Optical Materials, 2013, 35, 2072-2076.	3.6	7
69	(Bi)phenyl substituted 9-(2,2-diphenylvinyl)carbazoles as low cost hole transporting materials for efficient red PhOLEDs. Dyes and Pigments, 2018, 159, 173-178.	3.7	7
70	Highly Efficient Candlelight Organic Light-Emitting Diode with a Very Low Color Temperature. Molecules, 2021, 26, 7558.	3.8	7
71	Cross-linkable photoluminescent hole-transporting molecular glasses. Materials Chemistry and Physics, 2003, 77, 281-284.	4.0	6
72	Diphenylsilanes containing electronically isolated carbazolyl fragments as host materials for light emitting diodes. Synthetic Metals, 2011, 161, 92-95.	3.9	6

SAULIUS GRIGALEVICIUS

#	Article	IF	CITATIONS
73	Twin compounds of phenylethenyl substituted indole as efficient materials for electroluminescent devices. Dyes and Pigments, 2016, 134, 64-68.	3.7	6
74	Polymers Containing Diphenylvinyl-Substituted Indole Rings as Charge-Transporting Materials for OLEDs. Journal of Electronic Materials, 2016, 45, 1210-1215.	2.2	6
75	Polyethers with pendent phenylvinyl substituted carbazole rings as polymers for hole transporting layers of OLEDs. Optical Materials, 2016, 51, 148-153.	3.6	6
76	Tetramer of triphenylamine and similar derivatives with bromine atoms as hole injecting/transporting materials for efficient red phosphorescent OLEDs. Optical Materials, 2020, 108, 110225.	3.6	6
77	N,N′-Diphenyl-1,4-phenylenediamine-Based Enamines Containing Reactive Functional Groups as Building Blocks for Electro-Active Polymers. Designed Monomers and Polymers, 2009, 12, 579-587.	1.6	5
78	Twin derivatives of fluorophenyl, difluorophenyl or trifluorophenyl substituted carbazoles as electroactive amorphous materials. Synthetic Metals, 2015, 203, 122-126.	3.9	5
79	Efficient blue and green phosphorescent OLEDs with host material containing electronically isolated carbazolyl fragments. Optical Materials, 2018, 79, 446-449.	3.6	5
80	Hole-transporting polymers containing carbazol-3,9-diyl and 1,4-phenylene fragments in the main chain. Synthetic Metals, 2008, 158, 739-743.	3.9	4
81	Oxetanyl-functionalized 9-aryl[3,3′]bicarbazolyl derivatives as building blocks for electro-active polymers. Journal of Polymer Research, 2011, 18, 731-737.	2.4	4
82	Branched diphenylsilane derivatives containing electronically isolated indolyl moieties as host materials for blue organic light emitting diodes. Dyes and Pigments, 2011, 91, 177-181.	3.7	4
83	Easily synthesized and cheap carbazole- or phenoxazine-based hosts for efficient yellow phosphorescent OLEDs. Optical Materials, 2021, 118, 111251.	3.6	4
84	Synthesis and Thermal, Photophysical, Electrochemical Properties of 3,3-di[3-Arylcarbazol-9-ylmethyl]oxetane Derivatives. Materials, 2021, 14, 5569.	2.9	4
85	Wet process feasible novel fluorene-based molecular hole transporting layer for phosphorescent organic light emitting diodes. Optical Materials, 2021, 120, 111410.	3.6	4
86	Synthesis and properties of poly(N-phenylphenyleneamine)s. Materials Chemistry and Physics, 2003, 81, 191-194.	4.0	3
87	Synthesis and cationic polymerization of oxyranyl-functionalized triphenylamine. European Polymer Journal, 2006, 42, 1069-1074.	5.4	3
88	Electro-active monomers and polymers containing 3-arylcarbazol-9-yl fragments. Synthetic Metals, 2010, 160, 1962-1967.	3.9	3
89	Twin derivatives of 3-arylcarbazoles as efficient hole transporting amorphous materials. Optical Materials, 2013, 35, 553-557.	3.6	3
90	Polyethers containing 3,6-diarylcarbazolyl groups as polymeric materials for hole transporting layers of OLEDs. Designed Monomers and Polymers, 2015, 18, 592-598.	1.6	3

#	Article	IF	CITATIONS
91	Electroactive polymers containing 3-arylcarbazolyl units as hole transporting materials for OLEDs. Optical Materials, 2015, 42, 94-98.	3.6	3
92	Phenylethenyl substituted 10-alkylphenoxazines as new electroactive materials for organic light emitting diodes. Dyes and Pigments, 2018, 148, 313-318.	3.7	3
93	3-(N,N-Diphenylamino)carbazole Donor Containing Bipolar Derivatives with Very High Glass Transition Temperatures as Potential TADF Emitters for OLEDs. Coatings, 2022, 12, 932.	2.6	3
94	Di(9-alkylcarbazol-3-yl)arylamines as Electroactive Amorphous Materials for Optoelectronics. Monatshefte Für Chemie, 2006, 137, 1053-1062.	1.8	2
95	New electro-active oxetanyl-functionalized oligomers containing carbazol-3,6-diyl and different aromatic amino groups in the main chain. Synthetic Metals, 2009, 159, 91-95.	3.9	2
96	N-(2,2-Diphenylvinyl)-N,N′-diphenylbenzidine-based derivatives as hole-transporting glass-forming materials. Synthetic Metals, 2009, 159, 487-491.	3.9	2
97	Hole-Transporting Carbazole-Based Imines. Molecular Crystals and Liquid Crystals, 2011, 536, 192/[424]-199/[431].	0.9	2
98	Twin derivatives containing two 9-alkylcarbazol-3-yl fragments as new electro-active materials for organic light-emitting diodes. Optical Materials, 2013, 36, 444-448.	3.6	2
99	Electro-active oligomers containing pendent 3-phenylcarbazol-6-yl or 2-phenylfluoren-7-yl fragments as materials for OLEDs. Optical Materials, 2014, 37, 788-792.	3.6	2
100	Pyridinyl-Carbazole Fragments Containing Host Materials for Efficient Green and Blue Phosphorescent OLEDs. Molecules, 2021, 26, 4615.	3.8	2
101	Pâ€152: Efficient Blue Phosphorescent OLEDs Employing Novel Oligocarbazoles as Highâ€Tripletâ€Energy Host Materials. Digest of Technical Papers SID International Symposium, 2007, 38, 772-775.	0.3	1
102	Well Defined Carbazol-3,9-Diyl Based Oligomers as Host Materials for Organic Electro-Phosphorescent Devices. Molecular Crystals and Liquid Crystals, 2007, 468, 77/[429]-86/[438].	0.9	1
103	Materials, Devices, Fabrication, Characterization, and Applications for OLED Illumination and Display. Advances in Materials Science and Engineering, 2012, 2012, 1-2.	1.8	1
104	Polyether containing N-[6-(N-carbazolyl)hexyl]carbazol-3-yl side chains and its model compound as components of organic light emitting diodes. Synthetic Metals, 2012, 162, 1898-1902.	3.9	1
105	Energy structure and electro-optical properties of organic layers with carbazole derivative. Thin Solid Films, 2014, 556, 405-409.	1.8	1
106	Polymers containing 9-alkylcarbazol-3,6-diyl and different aromatic amino groups in the main chain. European Polymer Journal, 2005, 41, 1821-1827.	5.4	0
107	Electro-active polymers containing electronically isolated N-phenyl-N-naphtylamine fragments. Synthetic Metals, 2014, 187, 52-56.	3.9	0
108	Polymers containing isolated phenylvinyl substituted carbazole rings as electroactive materials for OLEDs. AIP Conference Proceedings, 2016, , .	0.4	0

#	Article	IF	CITATIONS
109	High efficiency solution processable organic light emitting diode through materials and interfacial engineering. , 2016, , .		0
110	Efficient red phosphorescent OLEDs employing 2-phenylcarbazoles-based hole transport materials. , 2016, , .		0
111	Pâ€164: Enabling High Performance Organic Light Emitting Diode with Novel Biâ€carbazole Host. Digest of Technical Papers SID International Symposium, 2020, 51, 2005-2008.	0.3	0
112	New Electroactive Polymers with Electronically Isolated 4,7-Diarylfluorene Chromophores as Positive Charge Transporting Layer Materials for OLEDs. Molecules, 2021, 26, 1936.	3.8	0
113	Hole-transporting materials based on diarylfluorene compounds containing different substituents: DFT simulation, spectroscopic characterization and applications in organic light emitting diodes. Optical Materials, 2021, 119, 111345.	3.6	0