Vanessa Soto-Cerrato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/399784/publications.pdf

Version: 2024-02-01

41 papers 2,029 citations

201674 27 h-index 276875 41 g-index

42 all docs 42 docs citations

42 times ranked

2715 citing authors

#	Article	IF	CITATIONS
1	A Novel Late-Stage Autophagy Inhibitor That Efficiently Targets Lysosomes Inducing Potent Cytotoxic and Sensitizing Effects in Lung Cancer. Cancers, 2022, 14, 3387.	3.7	3
2	Multi-Smart and Scalable Bioligands-Free Nanomedical Platform for Intratumorally Targeted Tambjamine Delivery, a Difficult to Administrate Highly Cytotoxic Drug. Biomedicines, 2021, 9, 508.	3.2	6
3	Piano-Stool Ruthenium(II) Complexes with Delayed Cytotoxic Activity: Origin of the Lag Time. Inorganic Chemistry, 2021, 60, 7974-7990.	4.0	16
4	Expanding the Range of Pyrenylphosphines and Their Derived Ru(II)-Arene Complexes. Organometallics, 2020, 39, 2959-2971.	2.3	7
5	Tumors defective in homologous recombination rely on oxidative metabolism: relevance to treatments with <scp>PARP</scp> inhibitors. EMBO Molecular Medicine, 2020, 12, e11217.	6.9	37
6	Click-tambjamines as efficient and tunable bioactive anion transporters. Chemical Communications, 2020, 56, 3218-3221.	4.1	17
7	The Natural-Based Antitumor Compound T21 Decreases Survivin Levels through Potent STAT3 Inhibition in Lung Cancer Models. Biomolecules, 2019, 9, 361.	4.0	18
8	Targeting Autophagy for Cancer Treatment and Tumor Chemosensitization. Cancers, 2019, 11, 1599.	3.7	112
9	DNA-binding and in vitro cytotoxic activity of platinum(II) complexes of curcumin and caffeine. Journal of Inorganic Biochemistry, 2019, 198, 110749.	3.5	41
10	Therapeutic strategies involving survivin inhibition in cancer. Medicinal Research Reviews, 2019, 39, 887-909.	10.5	107
11	Small molecule anionophores promote transmembrane anion permeation matching CFTR activity. Scientific Reports, 2018, 8, 2608.	3.3	35
12	Highly Cytotoxic Ruthenium(II)-Arene Complexes from Bulky 1-Pyrenylphosphane Ligands. Inorganic Chemistry, 2018, 57, 14786-14797.	4.0	28
13	Novel Indole-based Tambjamine-Analogues Induce Apoptotic Lung Cancer Cell Death through p38 Mitogen-Activated Protein Kinase Activation. Molecular Cancer Therapeutics, 2017, 16, 1224-1235.	4.1	24
14	Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer. Biochemical Pharmacology, 2017, 126, 23-33.	4.4	48
15	Indole-based perenosins as highly potent HCl transporters and potential anti-cancer agents. Scientific Reports, 2017, 7, 9397.	3.3	42
16	Inhibition of Human Enhancer of Zeste Homolog 2 with Tambjamine Analogs. Journal of Chemical Information and Modeling, 2017, 57, 2089-2098.	5.4	5
17	Fluorescent transmembrane anion transporters: shedding light on anionophoric activity in cells. Chemical Science, 2016, 7, 5069-5077.	7.4	44
18	Nonprotonophoric Electrogenic Clâ^' Transport Mediated by Valinomycin-like Carriers. CheM, 2016, 1, 127-146.	11.7	128

#	Article	IF	CITATIONS
19	From Proteomic Analysis to Potential Therapeutic Targets: Functional Profile of Two Lung Cancer Cell Lines, A549 and SW900, Widely Studied in Pre-Clinical Research. PLoS ONE, 2016, 11, e0165973.	2.5	33
20	Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells. Journal of the American Chemical Society, 2015, 137, 15892-15898.	13.7	109
21	Transmembrane anion transport and cytotoxicity of synthetic tambjamine analogs. Organic and Biomolecular Chemistry, 2014, 12, 1771-1778.	2.8	52
22	The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumor Biology, 2013, 34, 1119-1129.	1.8	20
23	Bcl-2 family proteins and cytoskeleton changes involved in DM-1 cytotoxic effect on melanoma cells. Tumor Biology, 2013, 34, 1235-1243.	1.8	18
24	Chloride, carboxylate and carbonate transport by ortho-phenylenediamine-based bisureas. Chemical Science, 2013, 4, 103-117.	7.4	119
25	<scp>CDK</scp> â€mediated activation of the <scp>SCF^{FBXO}</scp> ²⁸ ubiquitin ligase promotes <scp>MYC</scp> â€driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Molecular Medicine, 2013, 5, 1067-1086.	6.9	61
26	N-Triethylene glycol (N-TEG) as a surrogate for the N-methyl group: application to Sansalvamide A peptide analogs. Chemical Communications, 2013, 49, 6430.	4.1	17
27	Synthesis and biological evaluation of a post-synthetically modified Trp-based diketopiperazine. MedChemComm, 2013, 4, 1171.	3.4	16
28	Molecular Interactions of Prodiginines with the BH3 Domain of Anti-Apoptotic Bcl-2 Family Members. PLoS ONE, 2013, 8, e57562.	2.5	45
29	Towards "drug-like―indole-based transmembrane anion transporters. Chemical Science, 2012, 3, 2501.	7.4	73
30	Identification of dual mTORC1 and mTORC2 inhibitors in melanoma cells: Prodigiosin vs. obatoclax. Biochemical Pharmacology, 2012, 83, 489-496.	4.4	70
31	Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase- $3\hat{l}^2$ activity in human breast cancer cells. Molecular Cancer Therapeutics, 2007, 6, 362-369.	4.1	60
32	The anticancer agent prodigiosin induces p21WAF1/CIP1 expression via transforming growth factor-beta receptor pathway. Biochemical Pharmacology, 2007, 74, 1340-1349.	4.4	43
33	Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. European Journal of Pharmacology, 2007, 572, 111-119.	3.5	71
34	Proteomic analysis of prodigiosin-induced apoptosis in a breast cancer mitoxantrone-resistant (MCF-7) Tj ETQqC	0 <u>0 rg</u> BT	/Overlock 10 1
35	High cytotoxic sensitivity of the human small cell lung doxorubicin-resistant carcinoma (GLC4/ADR) cell line to prodigiosin through apoptosis activation. Anti-Cancer Drugs, 2005, 16, 393-399.	1.4	30
36	AT514, a cyclic depsipeptide from Serratia marcescens, induces apoptosis of B-chronic lymphocytic leukemia cells: interference with the Akt/NF-κB survival pathway. Leukemia, 2005, 19, 572-579.	7.2	43

#	Article	IF	CITATIONS
37	Cell cycle arrest and proapoptotic effects of the anticancer cyclodepsipeptide serratamolide (AT514) are independent of p53 status in breast cancer cells. Biochemical Pharmacology, 2005, 71, 32-41.	4.4	23
38	Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin. Biochemical Pharmacology, 2004, 68, 1345-1352.	4.4	92
39	Prodigiosin Induces Apoptosis by Acting on Mitochondria in Human Lung Cancer Cells. Annals of the New York Academy of Sciences, 2003, 1010, 178-181.	3.8	37
40	The prodigiosins, proapoptotic drugs with anticancer properties. Biochemical Pharmacology, 2003, 66, 1447-1452.	4.4	199
41	Microsatellite Variation in Colonizing and Palearctic Populations of Drosophila subobscura. Molecular Biology and Evolution, 2001, 18, 731-740.	8.9	66