Ke Zheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997721/publications.pdf Version: 2024-02-01

KE ZHENC

#	Article	IF	CITATIONS
1	Characterization and sources apportionment of overflow pollution in urban separate stormwater systems inappropriately connected with sewage. Journal of Environmental Management, 2022, 303, 114231.	7.8	9
2	Redox-neutral access to 3,3′-disubstituted oxindoles <i>via</i> radical coupling reactions. Organic Chemistry Frontiers, 2022, 9, 4164-4170.	4.5	3
3	Phosphoric Acid Mediated Lightâ€Induced Minisci Câ^'H Alkylation of <i>N</i> â€Heteroarenes. European Journal of Organic Chemistry, 2021, 2021, 969-972.	2.4	8
4	Novel pH-Triggered Doxorubicin-Releasing Nanoparticles Self-Assembled by Functionalized β-Cyclodextrin and Amphiphilic Phthalocyanine for Anticancer Therapy. ACS Applied Materials & Interfaces, 2021, 13, 10674-10688.	8.0	33
5	Construction of sterically congested oxindole derivatives <i>via</i> visible-light-induced radical-coupling. Chemical Science, 2021, 12, 15399-15406.	7.4	26
6	Simultaneous Targeted Analysis of GGT and Its H-Type mRNA in HepG2 Cells Based on Degradable Silicon Nanomaterials. Analytical Chemistry, 2021, 93, 16581-16589.	6.5	3
7	Photo-triggered release of doxorubicin from liposomes formulated by amphiphilic phthalocyanines for combination therapy to enhance antitumor efficacy. Journal of Materials Chemistry B, 2020, 8, 8022-8036.	5.8	15
8	Electrochemical Iodoamination of Indoles Using Unactivated Amines. Organic Letters, 2020, 22, 9184-9189.	4.6	15
9	Discovery of M-808 as a Highly Potent, Covalent, Small-Molecule Inhibitor of the Menin–MLL Interaction with Strong <i>In Vivo</i> Antitumor Activity. Journal of Medicinal Chemistry, 2020, 63, 4997-5010.	6.4	23
10	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie, 2019, 131, 14808-14814.	2.0	9
11	Lightâ€Driven Intramolecular Câ^'N Crossâ€Coupling via a Longâ€Lived Photoactive Photoisomer Complex. Angewandte Chemie - International Edition, 2019, 58, 14666-14672.	13.8	45
12	Electrochemically Enabled C3-Formylation and -Acylation of Indoles with Aldehydes. Organic Letters, 2019, 21, 7702-7707.	4.6	14
13	Structure-Based Discovery of M-89 as a Highly Potent Inhibitor of the Menin-Mixed Lineage Leukemia (Menin-MLL) Protein–Protein Interaction. Journal of Medicinal Chemistry, 2019, 62, 6015-6034.	6.4	20
14	Metalâ€Free Synthesis of Polycyclic Quinazolinones Enabled by a (NH ₄) ₂ S ₂ O ₈ â€Promoted Intramolecular Oxidative Cyclization. European Journal of Organic Chemistry, 2019, 2019, 3649-3653.	2.4	31
15	A scalable electrochemical dehydrogenative cross-coupling of P(O)H compounds with RSH/ROH. Chemical Communications, 2019, 55, 4981-4984.	4.1	74
16	Intramolecular Reductive Cyclization of <i>o</i> -Nitroarenes via Biradical Recombination. Organic Letters, 2019, 21, 1438-1443.	4.6	39
17	Design of the Firstâ€inâ€Class, Highly Potent Irreversible Inhibitor Targeting the Meninâ€MLL Protein–Protein Interaction. Angewandte Chemie - International Edition, 2018, 57, 1601-1605.	13.8	49
18	Design of the Firstâ€inâ€Class, Highly Potent Irreversible Inhibitor Targeting the Meninâ€MLL Protein–Protein Interaction. Angewandte Chemie, 2018, 130, 1617-1621.	2.0	1

Ke Zheng

#	Article	IF	CITATIONS
19	Recent Advances in Metal-Catalyzed Asymmetric 1,4-Conjugate Addition (ACA) of Nonorganometallic Nucleophiles. Chemical Reviews, 2018, 118, 7586-7656.	47.7	223
20	Novel Quick Start (QS) method for optimization of TCP. Wireless Networks, 2016, 22, 211-222.	3.0	115
21	Advancements in Catalytic Asymmetric Intermolecular Ene-Type Reactions. Synthesis, 2014, 46, 2241-2257.	2.3	25
22	Completely OH-Selective FeCl ₃ -Catalyzed Prins Cyclization: Highly Stereoselective Synthesis of 4-OH-Tetrahydropyrans. Journal of the American Chemical Society, 2012, 134, 17564-17573.	13.7	85
23	Catalytic Asymmetric Addition of Alkyl Enol Ethers to 1,2â€Dicarbonyl Compounds: Highly Enantioselective Synthesis of Substituted 3â€Alkylâ€3â€Hydroxyoxindoles. Angewandte Chemie - International Edition, 2011, 50, 2573-2577.	13.8	122
24	The Magnesium(II) atalyzed Asymmetric Ketone–Ene Reaction under Solventâ€Free Conditions: Stereocontrolled Access to Enantioenriched Trifluoromethylâ€Substituted Compounds. Chemistry - A European Journal, 2010, 16, 9969-9972.	3.3	29
25	Highly enantioselective aza-ene-type reaction catalyzed by chiral N,N′-dioxide-nickel(ii) complex. Chemical Communications, 2010, 46, 3771.	4.1	48
26	Asymmetric Carbonyl-Ene Reaction Catalyzed by Chiral <i>N,N′</i> -Dioxide-Nickel(II) Complex: Remarkably Broad Substrate Scope. Journal of the American Chemical Society, 2008, 130, 15770-15771.	13.7	117
27	Highly Enantioselective Allylation of α-Ketoesters Catalyzed by <i>N</i> , <i>N</i> â€~-Dioxideâ^'In(III) Complexes. Journal of Organic Chemistry, 2007, 72, 8478-8483.	3.2	63