
Menglei Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997532/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Facile synthesis of single-nickel-atomic dispersed N-doped carbon framework for efficient electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2019, 241, 113-119.	20.2	227
2	Unveiling Electrochemical Urea Synthesis by Coâ€Activation of CO ₂ and N ₂ with Mott–Schottky Heterostructure Catalysts. Angewandte Chemie - International Edition, 2021, 60, 10910-10918.	13.8	182
3	Electrochemical C–N coupling with perovskite hybrids toward efficient urea synthesis. Chemical Science, 2021, 12, 6048-6058.	7.4	138
4	Highly selective electroreduction of N ₂ and CO ₂ to urea over artificial frustrated Lewis pairs. Energy and Environmental Science, 2021, 14, 6605-6615.	30.8	130
5	Atomically Dispersed Indium Sites for Selective CO ₂ Electroreduction to Formic Acid. ACS Nano, 2021, 15, 5671-5678.	14.6	121
6	Polyoxometalate-assisted formation of CoSe/MoSe ₂ heterostructures with enhanced oxygen evolution activity. Journal of Materials Chemistry A, 2019, 7, 3317-3326.	10.3	94
7	Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO ₂ to formate. Nanoscale, 2019, 11, 7805-7812.	5.6	80
8	Host–guest molecular interaction promoted urea electrosynthesis over a precisely designed conductive metal–organic framework. Energy and Environmental Science, 2022, 15, 2084-2095.	30.8	73
9	Br/Co/N Co-doped porous carbon frameworks with enriched defects for high-performance electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 10865-10874.	10.3	47
10	Engineering Surface Atomic Architecture of NiTe Nanocrystals Toward Efficient Electrochemical N ₂ Fixation. Advanced Functional Materials, 2020, 30, 2004208.	14.9	42
11	Tuning carbon nanotube-grafted core-shell-structured cobalt selenide@carbon hybrids for efficient oxygen evolution reaction. Journal of Colloid and Interface Science, 2019, 533, 503-512.	9.4	40
12	Crâ€Doped Pd Metallene Endows a Practical Formaldehyde Sensor New Limit and High Selectivity. Advanced Materials, 2022, 34, e2105276.	21.0	40
13	Synthesis of polyoxometalates derived bifunctional catalyst towards efficient overall water splitting in neutral and alkaline medium. Journal of Colloid and Interface Science, 2018, 532, 774-781.	9.4	38
14	Unveiling Electrochemical Urea Synthesis by Coâ€Activation of CO ₂ and N ₂ with Mott–Schottky Heterostructure Catalysts. Angewandte Chemie, 2021, 133, 11005-11013.	2.0	38
15	Support effect boosting the electrocatalytic N ₂ reduction activity of Ni ₂ P/N,P-codoped carbon nanosheet hybrids. Journal of Materials Chemistry A, 2020, 8, 2691-2700.	10.3	32
16	Work function regulation of nitrogen-doped carbon nanotubes triggered by metal nanoparticles for efficient electrocatalytic nitrogen fixation. Journal of Materials Chemistry A, 2020, 8, 26066-26074.	10.3	32
17	Cu-incorporated PtBi intermetallic nanofiber bundles enhance alcohol oxidation electrocatalysis with high CO tolerance. Journal of Materials Chemistry A, 2021, 9, 20676-20684.	10.3	31
18	Donor–Acceptor Couples of Metal and Metal Oxides with Enriched Ni ³⁺ Active Sites for Oxygen Evolution. ACS Applied Materials & Interfaces, 2021, 13, 17501-17510.	8.0	29

Menglei Yuan

#	Article	IF	CITATIONS
19	Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium–sulfur batteries. Journal of Colloid and Interface Science, 2022, 605, 129-137.	9.4	21
20	Investigation of MOF-derived humidity-proof hierarchical porous carbon frameworks as highly-selective toluene absorbents and sensing materials. Journal of Hazardous Materials, 2021, 411, 125034.	12.4	19
21	Interfacial engineering of transition-metal sulfides heterostructures with built-in electric-field effects for enhanced oxygen evolution reaction. Chinese Journal of Chemical Engineering, 2022, 41, 320-328.	3.5	16
22	Trimetallic synergy in dendritic intermetallic PtSnBi nanoalloys for promoting electrocatalytic alcohol oxidation. Journal of Colloid and Interface Science, 2021, 602, 504-512.	9.4	13
23	Boosting oxygen evolution reactivity by modulating electronic structure and honeycomb-like architecture in Ni2P/N,P-codoped carbon hybrids. Green Energy and Environment, 2021, 6, 866-874.	8.7	12
24	Efficient Tetra-Functional Electrocatalyst with Synergetic Effect of Different Active Sites for Multi-Model Energy Conversion and Storage. ACS Applied Materials & Interfaces, 2020, 12, 23017-23027.	8.0	12
25	Iron/nickel nano-alloy encapsulated in nitrogen-doped carbon framework for CO2 electrochemical conversion with prominent CO selectivity. Journal of Power Sources, 2020, 449, 227496.	7.8	10
26	Local charge rearrangement to boost the chemical adsorption and catalytic conversion of polysulfides for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 7566-7574.	10.3	10
27	InOOH as an efficient bidirectional catalyst for accelerated polysulfides conversion to enable high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science, 2022, 610, 418-426.	9.4	7
28	CoO _x /UiO-66 and NiO/UiO-66 heterostructures with UiO-66 frameworks for enhanced oxygen evolution reactions. New Journal of Chemistry, 2021, 45, 14822-14830.	2.8	6
29	Room-Temperature One-Pot Palladium-Catalyzed Synthesis of 3-Hydroxyisoindolin-1-ones from Phenylglyoxylic Acids. Heterocycles, 2016, 92, 560.	0.7	4
30	Surface Atomic Architecture: Engineering Surface Atomic Architecture of NiTe Nanocrystals Toward Efficient Electrochemical N ₂ Fixation (Adv. Funct. Mater. 39/2020). Advanced Functional Materials, 2020, 30, 2070263.	14.9	0