
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research Part B, 1999, 48, 342-353.	3.0	544
2	An Injectable, Selfâ€Healing Hydrogel to Repair the Central Nervous System. Advanced Materials, 2015, 27, 3518-3524.	11.1	471
3	Structure-property relationships in the case of the degradation of massive poly(?-hydroxy acids) in aqueous media. Journal of Materials Science: Materials in Medicine, 1990, 1, 198-206.	1.7	429
4	Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials, 1994, 15, 1209-1213.	5.7	375
5	3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials, 2015, 71, 48-57.	5.7	354
6	Further investigations on the hydrolytic degradation of poly (DL-lactide). Biomaterials, 1999, 20, 35-44.	5.7	275
7	Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules, 2019, 24, 3005.	1.7	266
8	More about the degradation of LA/GA-derived matrices in aqueous media. Journal of Controlled Release, 1991, 16, 15-26.	4.8	265
9	Selective Enzymatic Degradations of Poly(l-lactide) and Poly(ε-caprolactone) Blend Films. Biomacromolecules, 2000, 1, 350-359.	2.6	250
10	In vivo degradation of massive poly(α-hydroxy acids): Validation of In vitro findings. Biomaterials, 1992, 13, 594-600.	5.7	221
11	Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials, 2016, 83, 156-168.	5.7	211
12	Synthesis and degradation of PLA–PCL–PLA triblock copolymer prepared by successive polymerization of Îμ-caprolactone and dl-lactide. Polymer, 2004, 45, 8675-8681.	1.8	204
13	Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials, 2011, 32, 6929-6945.	5.7	198
14	Influence of Crystallinity and Stereochemistry on the Enzymatic Degradation of Poly(lactide)s. Macromolecules, 1999, 32, 4454-4456.	2.2	189
15	Synthesis, Characterization, and Stereocomplex-Induced Gelation of Block Copolymers Prepared by Ring-Opening Polymerization ofl(d)-Lactide in the Presence of Poly(ethylene glycol). Macromolecules, 2003, 36, 8008-8014.	2.2	187
16	Review: Polymeric-Based 3D Printing for Tissue Engineering. Journal of Medical and Biological Engineering, 2015, 35, 285-292.	1.0	182
17	The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials, 2010, 31, 6796-6808.	5.7	171
18	Synthesis and Biomedical Applications of Self-healing Hydrogels. Frontiers in Chemistry, 2018, 6, 449.	1.8	158

#	Article	IF	CITATIONS
19	Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials, 2001, 22, 363-369.	5.7	154
20	Enzymatic Degradation of Block Copolymers Prepared from ε-Caprolactone and Poly(ethylene glycol). Biomacromolecules, 2002, 3, 525-530.	2.6	132
21	Poly(vinyl alcohol) Nanocomposites Reinforced with Bamboo Charcoal Nanoparticles: Mineralization Behavior and Characterization. Materials, 2015, 8, 4895-4911.	1.3	127
22	New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids. Clinical Materials, 1992, 10, 3-8.	0.5	122
23	Degradation and cell culture studies on block copolymers prepared by ring opening polymerization of ?-caprolactone in the presence of poly(ethylene glycol). Journal of Biomedical Materials Research Part B, 2004, 69A, 417-427.	3.0	121
24	Unique crystallization behavior of poly(l-lactide)/poly(d-lactide) stereocomplex depending on initial melt states. Polymer, 2008, 49, 5670-5675.	1.8	120
25	Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering. ACS Biomaterials Science and Engineering, 2018, 4, 1397-1406.	2.6	118
26	Enzymatic degradation of polylactide stereocopolymers with predominant d-lactyl contents. Polymer Degradation and Stability, 2000, 71, 61-67.	2.7	114
27	A novel biodegradable self-healing hydrogel to induce blood capillary formation. NPG Asia Materials, 2017, 9, e363-e363.	3.8	114
28	Enzymatic degradation of stereocopolymers derived from l -, dl - and meso-lactides. Polymer Degradation and Stability, 2000, 67, 85-90.	2.7	113
29	Synthesis and Characterization of Block Copolymers ofÉ›-Caprolactone andDL-Lactide Initiated by Ethylene Glycol or Poly(ethylene glycol). Macromolecular Chemistry and Physics, 2003, 204, 1994-2001.	1.1	112
30	Novel chitosan–cellulose nanofiber self-healing hydrogels to correlate self-healing properties of hydrogels with neural regeneration effects. NPG Asia Materials, 2019, 11, .	3.8	108
31	Enzyme-catalyzed polymerization and degradation of copolymers prepared from ϵ-caprolactone and poly(ethylene glycol). Polymer, 2003, 44, 5145-5151.	1.8	107
32	DSC analysis of isothermal melt-crystallization, glass transition and melting behavior of poly(l-lactide) with different molecular weights. European Polymer Journal, 2007, 43, 4431-4439.	2.6	104
33	Preparation, Characterization, and Mechanism for Biodegradable and Biocompatible Polyurethane Shape Memory Elastomers. ACS Applied Materials & Interfaces, 2017, 9, 5419-5429.	4.0	104
34	Hydrolytic degradation of poly(dl-lactic acid) in the presence of caffeine base. Journal of Controlled Release, 1996, 40, 41-53.	4.8	103
35	Novel Biodegradable Polylactide/poly(ethylene glycol) Micelles Prepared by Direct Dissolution Method for Controlled Delivery of Anticancer Drugs. Pharmaceutical Research, 2009, 26, 2332-2342.	1.7	102
36	Cryogel/hydrogel biomaterials and acupuncture combined to promote diabetic skin wound healing through immunomodulation. Biomaterials, 2021, 269, 120608.	5.7	101

#	Article	IF	CITATIONS
37	Processing of Polycaprolactone and Polycaprolactone-Based Copolymers into 3D Scaffolds, and Their Cellular Responses. Tissue Engineering - Part A, 2009, 15, 3013-3024.	1.6	100
38	Structureâ^'Property Relationships of Copolymers Obtained by Ring-Opening Polymerization of Glycolide and Îμ-Caprolactone. Part 1. Synthesis and Characterization. Biomacromolecules, 2005, 6, 483-488.	2.6	99
39	Lipase-Catalyzed Biodegradation of Poly(ε-caprolactone) Blended with Various Polylactide-Based Polymers. Biomacromolecules, 2003, 4, 372-377.	2.6	94
40	Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics, 2014, 15, 10.	1.2	92
41	Glucose-sensitive self-healing hydrogel as sacrificial materials to fabricate vascularized constructs. Biomaterials, 2017, 133, 20-28.	5.7	90
42	Effect of cellulose nanocrystals on scaffolds comprising chitosan, alginate and hydroxyapatite for bone tissue engineering. International Journal of Biological Macromolecules, 2019, 121, 814-821.	3.6	90
43	Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications. Carbohydrate Polymers, 2019, 212, 75-88.	5.1	89
44	3D bioprinting: A new insight into the therapeutic strategy of neural tissue regeneration. Organogenesis, 2015, 11, 153-158.	0.4	88
45	Degradation characteristics of poly(ε-caprolactone)-based copolymers and blends. Journal of Applied Polymer Science, 2006, 102, 1681-1687.	1.3	87
46	Synthesis and Gelation Properties of PEGâ^'PLAâ^'PEG Triblock Copolymers Obtained by Coupling Monohydroxylated PEGâ^'PLA with Adipoyl Chloride. Langmuir, 2007, 23, 2778-2783.	1.6	82
47	Peripheral nerve regeneration using a microporous polylactic acid asymmetric conduit in a rabbit long-gap sciatic nerve transection model. Biomaterials, 2011, 32, 3764-3775.	5.7	81
48	Accumulation and Toxicity of Superparamagnetic Iron Oxide Nanoparticles in Cells and Experimental Animals. International Journal of Molecular Sciences, 2016, 17, 1193.	1.8	81
49	Substrate-dependent Wnt signaling in MSC differentiation within biomaterial-derived 3D spheroids. Biomaterials, 2013, 34, 4725-4738.	5.7	80
50	Characterization and biocompatibility of chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 2011, 85, 198-206.	2.5	79
51	Characterization of Biodegradable Polyurethane Nanoparticles and Thermally Induced Self-Assembly in Water Dispersion. ACS Applied Materials & Interfaces, 2014, 6, 5685-5694.	4.0	79
52	An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Acta Biomaterialia, 2021, 122, 211-219.	4.1	79
53	Micelles formed by self-assembling of polylactide/poly(ethylene glycol) block copolymers in aqueous solutions. Journal of Colloid and Interface Science, 2007, 314, 470-477.	5.0	78

#	Article	IF	CITATIONS
55	Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks. Carbohydrate Polymers, 2019, 206, 380-388.	5.1	77
56	Structureâ^'Property Relationships of Copolymers Obtained by Ring-Opening Polymerization of Glycolide and ε-Caprolactone. Part 2. Influence of Composition and Chain Microstructure on the Hydrolytic Degradation. Biomacromolecules, 2005, 6, 489-497.	2.6	76
57	Diffusion ordered spectroscopy (DOSY) as a powerful tool for amphiphilic block copolymer characterization and for critical micelle concentration (CMC) determination. Polymer Chemistry, 2012, 3, 2006.	1.9	76
58	Water-based synthesis and processing of novel biodegradable elastomers for medical applications. Journal of Materials Chemistry B, 2014, 2, 5083-5092.	2.9	76
59	Synthesis and Characterization of Dual Stimuli-Sensitive Biodegradable Polyurethane Soft Hydrogels for 3D Cell-Laden Bioprinting. ACS Applied Materials & Interfaces, 2018, 10, 29273-29287.	4.0	75
60	Hydrolytic degradation of poly(oxyethylene)-poly-(?-caprolactone) multiblock copolymers. Journal of Applied Polymer Science, 1998, 68, 989-998.	1.3	71
61	Crystalline oligomeric stereocomplex as an intermediate compound in racemic poly(DL-lactic acid) degradation. Polymer International, 1994, 33, 37-41.	1.6	69
62	Novel thymopentin release systems prepared from bioresorbable PLA–PEG–PLA hydrogels. International Journal of Pharmaceutics, 2010, 386, 15-22.	2.6	69
63	Double-Network Polyurethane-Gelatin Hydrogel with Tunable Modulus for High-Resolution 3D Bioprinting. ACS Applied Materials & Interfaces, 2019, 11, 32746-32757.	4.0	69
64	Design Strategies of Conductive Hydrogel for Biomedical Applications. Molecules, 2020, 25, 5296.	1.7	69
65	Semi-Interpenetrating Polymer Network of Hyaluronan and Chitosan Self-Healing Hydrogels for Central Nervous System Repair. ACS Applied Materials & Interfaces, 2020, 12, 40108-40120.	4.0	69
66	Modulation of Macrophage Phenotype by Biodegradable Polyurethane Nanoparticles: Possible Relation between Macrophage Polarization and Immune Response of Nanoparticles. ACS Applied Materials & Interfaces, 2018, 10, 19436-19448.	4.0	68
67	Morphology and melt crystallization of poly(L-lactide) obtained by ring opening polymerization ofL-lactide with zinc catalyst. Polymer Engineering and Science, 2006, 46, 1583-1589.	1.5	66
68	Degradation and osteogenic potential of a novel poly(lactic acid)/nano-sized β-tricalcium phosphate scaffold. International Journal of Nanomedicine, 2012, 7, 5881.	3.3	66
69	Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials, 2014, 35, 2630-2641.	5.7	66
70	Selfâ€assembled adult adiposeâ€derived stem cell spheroids combined with biomaterials promote wound healing in a rat skin repair model. Wound Repair and Regeneration, 2015, 23, 57-64.	1.5	65
71	Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-d,l-lactide) random copolymers with shape memory behavior. European Polymer Journal, 2010, 46, 783-791.	2.6	64
72	Biodegradable polymer scaffolds. Journal of Materials Chemistry B, 2016, 4, 7493-7505.	2.9	64

#	Article	IF	CITATIONS
73	Synthesis and characterization of poly(oxyethylene)-poly(caprolactone) multiblock copolymers. Polymer International, 1998, 45, 419-426.	1.6	63
74	Hydrolytic degradation of PLA/PEO/PLA triblock copolymers prepared in the presence of Zn metal or CaH2. Polymer, 1998, 39, 5421-5430.	1.8	63
75	Bioresorbable Hydrogels Prepared Through Stereocomplexation between Poly(L-lactide) and Poly(D-lactide) Blocks Attached to Poly(ethylene glycol). Macromolecular Bioscience, 2003, 3, 657-661.	2.1	63
76	Acquisition of epithelial–mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids. Biomaterials, 2014, 35, 10070-10079.	5.7	63
77	Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature. ACS Applied Materials & Interfaces, 2015, 7, 27613-27623.	4.0	62
78	Biodegradable water-based polyurethane scaffolds with a sequential release function for cell-free cartilage tissue engineering. Acta Biomaterialia, 2019, 88, 301-313.	4.1	62
79	Nanoparticle uptake and gene transfer efficiency for MSCs on chitosan and chitosan-hyaluronan substrates. Biomaterials, 2012, 33, 3639-3650.	5.7	60
80	Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomaterialia, 2018, 70, 57-70.	4.1	60
81	Smart polymers for cell therapy and precision medicine. Journal of Biomedical Science, 2019, 26, 73.	2.6	60
82	Evaluation of biodegradable elastic scaffolds made of anionic polyurethane for cartilage tissue engineering. Colloids and Surfaces B: Biointerfaces, 2015, 125, 34-44.	2.5	57
83	An Injectable, Electroconductive Hydrogel/Scaffold for Neural Repair and Motion Sensing. Chemistry of Materials, 2020, 32, 10407-10422.	3.2	57
84	Isolation of the multipotent MSC subpopulation from human gingival fibroblasts by culturing on chitosan membranes. Biomaterials, 2012, 33, 2642-2655.	5.7	56
85	The effect of elastic biodegradable polyurethane electrospun nanofibers on the differentiation of mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 2014, 122, 414-422.	2.5	56
86	Self-assembled filomicelles prepared from polylactide/poly(ethylene glycol) block copolymers for anticancer drug delivery. International Journal of Pharmaceutics, 2015, 485, 357-364.	2.6	55
87	The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology, 2010, 62, 143-155.	0.7	54
88	Biodegradation of Aliphatic Polyesters. , 2002, , 71-131.		53
89	Enzyme-catalyzed polymerization and degradation of copolyesters of ε-caprolactone and γ-butyrolactone. Polymer, 2005, 46, 12682-12688.	1.8	53
90	Influence of chain microstructure on the hydrolytic degradation of copolymers from 1,3â€ŧrimethylene carbonate and <scp>L</scp> â€lactide. Journal of Polymer Science Part A, 2009, 47, 3869-3879.	2.5	53

#	Article	IF	CITATIONS
91	Chondrogenesis from Human Placenta-Derived Mesenchymal Stem Cells in Three-Dimensional Scaffolds for Cartilage Tissue Engineering. Tissue Engineering - Part A, 2011, 17, 1549-1560.	1.6	53
92	Thermo-responsive drug release from self-assembled micelles of brush-like PLA/PEG analogues block copolymers. International Journal of Pharmaceutics, 2015, 491, 152-161.	2.6	53
93	Enzymatic degradation of block copolymers obtained by sequential ring opening polymerization of l-lactide and E>-caprolactone. Polymer Degradation and Stability, 2007, 92, 1769-1777.	2.7	50
94	Novel flexible nerve conduits made of waterâ€based biodegradable <i>polyurethane</i> for peripheral nerve regeneration. Journal of Biomedical Materials Research - Part A, 2017, 105, 1383-1392.	2.1	50
95	Synthesis and characterization of poly(L-lactide)-poly(ethylene glycol) multiblock copolymers. Journal of Applied Polymer Science, 2002, 84, 1729-1736.	1.3	47
96	Methylated and pegylated PLA-PCL-PLA block copolymers via the chemical modification of di-hydroxy PCL combined with the ring opening polymerization of lactide. Journal of Polymer Science Part A, 2005, 43, 4196-4205.	2.5	47
97	In Vitro Study of a Novel Nanogold-Collagen Composite to Enhance the Mesenchymal Stem Cell Behavior for Vascular Regeneration. PLoS ONE, 2014, 9, e104019.	1.1	46
98	Aggregation behavior of self-assembling polylactide/poly(ethylene glycol) micelles for sustained drug delivery. International Journal of Pharmaceutics, 2010, 394, 43-49.	2.6	45
99	Chitosan 3D cell culture system promotes naà ve-like features of human induced pluripotent stem cells: A novel tool to sustain pluripotency and facilitate differentiation. Biomaterials, 2021, 268, 120575.	5.7	45
100	Synthesis and Rheological Properties of Polylactide/Poly(ethylene glycol) Multiblock Copolymers. Macromolecular Bioscience, 2005, 5, 1125-1131.	2.1	44
101	Nonâ€isothermal crystallization kinetics of poly(<scp>L</scp> â€iactide). Polymer International, 2010, 59, 1616-1621.	1.6	44
102	Synthesis and ring-opening polymerisation of a new alkyne-functionalised glycolide towards biocompatible amphiphilic graft copolymers. Polymer Chemistry, 2013, 4, 3705.	1.9	43
103	Biomaterial substrate-derived compact cellular spheroids mimicking the behavior of pancreatic cancer and microenvironment. Biomaterials, 2019, 213, 119202.	5.7	43
104	Bioactive composite films with chitosan and carotenoproteins extract from blue crab shells: Biological potential and structural, thermal, and mechanical characterization. Food Hydrocolloids, 2019, 89, 802-812.	5.6	43
105	Anisotropic Self-Assembling Micelles Prepared by the Direct Dissolution of PLA/PEG Block Copolymers with a High PEG Fraction. Langmuir, 2011, 27, 8000-8008.	1.6	42
106	Hydrolytic degradation of coral/poly(DL-lactic acid) bioresorbable material. Journal of Biomaterials Science, Polymer Edition, 1996, 7, 817-827.	1.9	41
107	Degradation of copolymers obtained by ring-opening polymerization of glycolide and É›-caprolactone: A high resolution NMR and ESI-MS study. Polymer Degradation and Stability, 2008, 93, 990-999.	2.7	41
108	Thermo-responsive release of curcumin from micelles prepared by self-assembly of amphiphilic P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymers. International Journal of Pharmaceutics, 2014, 476, 31-40.	2.6	41

#	Article	IF	CITATIONS
109	Substrate-dependent modulation of 3D spheroid morphology self-assembled in mesenchymal stem cell-endothelial progenitor cell coculture. Biomaterials, 2014, 35, 7295-7307.	5.7	41
110	Degradation of L- and DL-lactic acid oligomers in the presence ofFusarium moniliforme andPseudomonas putida. Journal of Polymers and the Environment, 1996, 4, 213-223.	0.8	40
111	Chitosan-hyaluronan based 3D co-culture platform for studying the crosstalk of lung cancer cells and mesenchymal stem cells. Acta Biomaterialia, 2016, 42, 157-167.	4.1	40
112	Hydrolytic and enzymatic degradations of physically crosslinked hydrogels prepared from PLA/PEO/PLA triblock copolymers. Journal of Materials Science: Materials in Medicine, 2002, 13, 81-86.	1.7	39
113	Spheroid Formation and Enhanced Cardiomyogenic Potential of Adipose-Derived Stem Cells Grown on Chitosan. BioResearch Open Access, 2013, 2, 28-39.	2.6	39
114	Synthesis of water-based cationic polyurethane for antibacterial and gene delivery applications. Colloids and Surfaces B: Biointerfaces, 2016, 146, 825-832.	2.5	39
115	Enhanced Chondrogenic Differentiation Potential of Human Gingival Fibroblasts by Spheroid Formation on Chitosan Membranes. Tissue Engineering - Part A, 2012, 18, 67-79.	1.6	38
116	Multidrug PLA-PEG filomicelles for concurrent delivery of anticancer drugs—The influence of drug-drug and drug-polymer interactions on drug loading and release properties. International Journal of Pharmaceutics, 2016, 510, 365-374.	2.6	38
117	Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells. Scientific Reports, 2017, 7, 45751.	1.6	38
118	Biobased pH-responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold. Carbohydrate Polymers, 2020, 244, 116471.	5.1	38
119	Synthesis, Characterization, and Enzymatic Degradation of Copolymers Prepared from ε-Caprolactone and β-Butyrolactone. Macromolecules, 2004, 37, 9798-9803.	2.2	37
120	Rheology and Drug Release Properties of Bioresorbable Hydrogels Prepared from Polylactide/Poly(ethylene glycol) Block Copolymers. Macromolecular Symposia, 2005, 222, 23-36.	0.4	37
121	Design and Development of Immunomodulatory Antigen Delivery Systems Based on Peptide/PEG–PLA Conjugate for Tuning Immunity. Biomacromolecules, 2015, 16, 3666-3673.	2.6	37
122	In vitro Degradation of Poly[(<scp>L</scp> â€lactide) <i>â€coâ€</i> (trimethylene carbonate)] Copolymers and a Composite with Poly[(<scp>L</scp> â€lactide) <i>â€coâ€</i> glycolide] Fibers as Cardiovascular Stent Material. Macromolecular Materials and Engineering, 2012, 297, 128-135.	1.7	36
123	Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials, 2018, 174, 31-40.	5.7	35
124	Novel bioresorbable hydrogels prepared from chitosanâ€ <i>graft</i> â€polylactide copolymers. Polymer International, 2012, 61, 74-81.	1.6	34
125	Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling. Nanotechnology, 2013, 24, 475102.	1.3	34
	Synthesis and selfâ€assembling of		

#	Article	IF	CITATIONS
127	Anti-bacterial dynamic hydrogels prepared from O-carboxymethyl chitosan by dual imine bond crosslinking for biomedical applications. International Journal of Biological Macromolecules, 2021, 167, 1146-1155.	3.6	34
128	In vitro degradation behavior of poly(lactide)–poly(ethylene glycol) block copolymer micelles in aqueous solution. International Journal of Pharmaceutics, 2010, 400, 96-103.	2.6	33
129	Brush-like amphiphilic copolymers based on polylactide and poly(ethylene glycol): Synthesis, self-assembly and evaluation as drug carrier. Polymer, 2013, 54, 1746-1754.	1.8	32
130	Tunable thermo-responsive P(NIPAAm-co-DMAAm)-b-PLLA-b-P(NIPAAm-co-DMAAm) triblock copolymer micelles as drug carriers. Journal of Materials Chemistry B, 2014, 2, 2738-2748.	2.9	32
131	Evaluation and characterization of waterborne biodegradable polyurethane films for the prevention of tendon postoperative adhesion. International Journal of Nanomedicine, 2018, Volume 13, 5485-5497.	3.3	32
132	4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties. Biofabrication, 2021, 13, 045029.	3.7	32
133	Controlled poly(l-lactide-co-trimethylene carbonate) delivery system of cyclosporine A and rapamycine – the effect of copolymer chain microstructure on drug release rate. International Journal of Pharmaceutics, 2011, 414, 203-209.	2.6	31
134	Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 597-609.	2.6	31
135	Post-assembly dimension-dependent face-selective etching of fullerene crystals. Materials Horizons, 2020, 7, 787-795.	6.4	31
136	Enzyme-catalyzed degradation behavior of l-lactide/trimethylene carbonate/glycolide terpolymers and their composites with poly(l-lactide-co-glycolide) fibers. Polymer Degradation and Stability, 2014, 103, 26-34.	2.7	30
137	Self-healing hydrogel for tissue repair in the central nervous system. Neural Regeneration Research, 2015, 10, 1922.	1.6	30
138	Antimicrobial Activities and Cellular Responses to Natural Silicate Clays and Derivatives Modified by Cationic Alkylamine Salts. ACS Applied Materials & Interfaces, 2009, 1, 2556-2564.	4.0	29
139	Modeling and self-assembly behavior of PEG–PLA–PEG triblock copolymers in aqueous solution. Nanoscale, 2013, 5, 9010.	2.8	29
140	Biomaterial Substrateâ€Mediated Multicellular Spheroid Formation and Their Applications in Tissue Engineering. Biotechnology Journal, 2017, 12, 1700064.	1.8	29
141	Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties. International Journal of Biological Macromolecules, 2020, 161, 958-968.	3.6	29
142	Effect of polymer degradation on prolonged release of paclitaxel from filomicelles of polylactide/poly(ethylene glycol) block copolymers. Materials Science and Engineering C, 2017, 75, 918-925.	3.8	28
143	Injectable Phenolic-Chitosan Self-Healing Hydrogel with Hierarchical Micelle Architectures and Fast Adhesiveness. Chemistry of Materials, 2021, 33, 3945-3958.	3.2	28
144	Biomaterials and neural regeneration. Neural Regeneration Research, 2020, 15, 1243.	1.6	28

#	Article	IF	CITATIONS
145	NMR analysis of the chain microstructure of biodegradable terpolymers with shape memory properties. European Polymer Journal, 2011, 47, 1315-1327.	2.6	27
146	Synthesis and characterization of waterborne polyurethane containing poly(3-hydroxybutyrate) as new biodegradable elastomers. Journal of Materials Chemistry B, 2015, 3, 9089-9097.	2.9	27
147	Cellular Spheroids of Mesenchymal Stem Cells and Their Perspectives in Future Healthcare. Applied Sciences (Switzerland), 2019, 9, 627.	1.3	27
148	Biomimetic Strain-Stiffening in Chitosan Self-Healing Hydrogels. ACS Applied Materials & Interfaces, 2022, 14, 16032-16046.	4.0	27
149	A bioresorbable cardiovascular stent prepared from <scp>L</scp> -lactide, trimethylene carbonate and glycolide terpolymers. Polymer Engineering and Science, 2014, 54, 1418-1426.	1.5	26
150	The substrate-dependent regeneration capacity of mesenchymal stem cell spheroids derived on various biomaterial surfaces. Biomaterials Science, 2014, 2, 1652-1660.	2.6	26
151	Nanosheet transfection: effective transfer of naked DNA on silica glass. NPG Asia Materials, 2015, 7, e184-e184.	3.8	26
152	Enzyme-catalyzed degradation of poly(l-lactide)/poly(É›-caprolactone) diblock, triblock and four-armed copolymers. Polymer Degradation and Stability, 2009, 94, 227-233.	2.7	25
153	In vitrobiocompatibility evaluation of bioresorbable copolymers prepared froml-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications. Journal of Biomaterials Science, Polymer Edition, 2015, 26, 497-514.	1.9	25
154	Reverse micelles prepared from amphiphilic polylactide- b -poly(ethylene glycol) block copolymers for controlled release of hydrophilic drugs. International Journal of Pharmaceutics, 2015, 495, 154-161.	2.6	25
155	InÂvitro degradation behavior of l-lactide/trimethylene carbonate/glycolide terpolymers and a composite with poly(l-lactide-co-glycolide) fibers. Polymer Degradation and Stability, 2015, 111, 203-210.	2.7	25
156	A facile method to prepare superparamagnetic iron oxide and hydrophobic drug-encapsulated biodegradable polyurethane nanoparticles. International Journal of Nanomedicine, 2017, Volume 12, 1775-1789.	3.3	25
157	Self-assembled micelles prepared from bio-based hydroxypropyl methyl cellulose and polylactide amphiphilic block copolymers for anti-tumor drug release. International Journal of Biological Macromolecules, 2020, 154, 39-47.	3.6	25
158	A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Materials Science and Engineering C, 2020, 113, 110978.	3.8	25
159	A Biodegradable Chitosan-Polyurethane Cryogel with Switchable Shape Memory. ACS Applied Materials & Interfaces, 2021, 13, 9702-9713.	4.0	25
160	Prominent Vascularization Capacity of Mesenchymal Stem Cells in Collagen–Gold Nanocomposites. ACS Applied Materials & Interfaces, 2016, 8, 28982-29000.	4.0	24
161	Substrate-mediated reprogramming of human fibroblasts into neural crest stem-like cells and their applications in neural repair. Biomaterials, 2016, 102, 148-161.	5.7	24
162	Novel thermo-responsive micelles prepared from amphiphilic hydroxypropyl methyl cellulose-block-JEFFAMINE copolymers. International Journal of Biological Macromolecules, 2019, 135, 38-45.	3.6	24

#	Article	IF	CITATIONS
163	Morphological investigation on melt crystallized polylactide homo―and stereocopolymers by enzymatic degradation with proteinase K. Journal of Polymer Science, Part B: Polymer Physics, 2008, 46, 959-970.	2.4	23
164	PLA stereocopolymers as sources of bioresorbable stents: Preliminary investigation in rabbit. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 349-356.	1.6	22
165	Totally bioresorbable composites prepared from poly(<scp>l</scp> â€lactide)â€ <i>co</i> â€(trimethylene) Tj ETQq stent material. Polymer Engineering and Science, 2012, 52, 741-750.	1 1 0.784 1.5	314 rgBT 22
166	Thermo-Responsive Polyurethane Hydrogels Based on Poly(ε-caprolactone) Diol and Amphiphilic Polylactide-Poly(Ethylene Glycol) Block Copolymers. Polymers, 2016, 8, 252.	2.0	22
167	Novel self-assembled micelles of amphiphilic poly(2-ethyl-2-oxazoline) -poly(L-lactide) diblock copolymers for sustained drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 120-127.	2.3	22
168	Development of MOF Reinforcement for Structural Stability and Toughness Enhancement of Biodegradable Bioinks. Biomacromolecules, 2021, 22, 1053-1064.	2.6	22
169	Using 3D bioprinting to produce mini-brain. Neural Regeneration Research, 2017, 12, 1595.	1.6	22
170	Synthesis and characterization of novel carboxymethyl chitosan grafted polylactide hydrogels for controlled drug delivery. Polymers for Advanced Technologies, 2015, 26, 924-931.	1.6	21
171	Angiogenic potential of co-spheroids of neural stem cells and endothelial cells in injectable gelatin-based hydrogel. Materials Science and Engineering C, 2019, 99, 140-149.	3.8	21
172	Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites. Biomaterials, 2014, 35, 6810-6821.	5.7	20
173	Chitosan derived co-spheroids of neural stem cells and mesenchymal stem cells for neural regeneration. Colloids and Surfaces B: Biointerfaces, 2017, 158, 527-538.	2.5	20
174	TRAIL-functionalized gold nanoparticles selectively trigger apoptosis in polarized macrophages. Nanotheranostics, 2017, 1, 326-337.	2.7	20
175	Functional engineered mesenchymal stem cells with fibronectin-gold composite coated catheters for vascular tissue regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 699-711.	1.7	20
176	A gelatin/collagen/polycaprolactone scaffold for skin regeneration. PeerJ, 2019, 7, e6358.	0.9	20
177	Dependence of morphology on composition of poly(L-lactide)- poly(ethylene glycol) multiblock copolymers. Polymers for Advanced Technologies, 2002, 13, 233-238.	1.6	19
178	Investigations on the morphology and melt crystallization of poly(<scp>L</scp> â€lactide)â€poly(ethylene) Tj ETQ	q0 0 0 rgE	3T Overlock
179	Relationship between Enzyme Adsorption and Enzymeâ€Catalyzed Degradation of Polylactides. Macromolecular Bioscience, 2008, 8, 25-31.	2.1	19

180Synthesis and Selfâ€Assembly of Amphiphilic Block Copolymers from Biobased Hydroxypropyl Methyl
Cellulose and Poly(<scp>l</scp>â€lactide). Macromolecular Chemistry and Physics, 2017, 218, 1600558.1.119

#	Article	IF	CITATIONS
181	Polyurethane Nanoparticle-Loaded Fenofibrate Exerts Inhibitory Effects on Nonalcoholic Fatty Liver Disease in Mice. Molecular Pharmaceutics, 2018, 15, 4550-4557.	2.3	19
182	Recent advances in the field of lactic acid/glycolic acid polymerâ€based therapeutic systems. Macromolecular Symposia, 1995, 98, 633-642.	0.4	18
183	Comparative study of the hydrolytic degradation of glycolide/ <scp>L</scp> ″actide/εâ€caprolactone terpolymers initiated by zirconium(IV) acetylacetonate or stannous octoate. Journal of Applied Polymer Science, 2008, 107, 3258-3266.	1.3	18
184	<italic>In vivo</italic> study on the histocompatibility and degradation behavior of biodegradable poly(trimethylene carbonate-co-d,l-lactide). Acta Biochimica Et Biophysica Sinica, 2011, 43, 433-440.	0.9	18
185	Neocartilage formation from mesenchymal stem cells grown in type II collagen–hyaluronan composite scaffolds. Differentiation, 2013, 86, 171-183.	1.0	18
186	Improved antioxidant activity and oxidative stability of spray dried European eel (Anguilla anguilla) oil microcapsules: Effect of emulsification process and eel protein isolate concentration. Materials Science and Engineering C, 2019, 104, 109867.	3.8	18
187	Bioresorbable filomicelles for targeted delivery of betulin derivative – In vitro study. International Journal of Pharmaceutics, 2019, 557, 43-52.	2.6	18
188	Human pluripotent stem cell (PSC)-derived mesenchymal stem cells (MSCs) show potent neurogenic capacity which is enhanced with cytoskeletal rearrangement. Oncotarget, 2016, 7, 43949-43959.	0.8	18
189	Delivery Capacity and Anticancer Ability of the Berberine-Loaded Gold Nanoparticles to Promote the Apoptosis Effect in Breast Cancer. Cancers, 2021, 13, 5317.	1.7	18
190	Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication, 2012, 4, 015002.	3.7	17
191	Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated clay nanoplatelets. RSC Advances, 2013, 3, 7392.	1.7	17
192	In vivo degradation of copolymers prepared from l-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials. Journal of Materials Science: Materials in Medicine, 2015, 26, 139.	1.7	17
193	Microstructure–property relationship of l-lactide/trimethylene carbonate/glycolide terpolymers as cardiovascular stent material. European Polymer Journal, 2015, 66, 429-436.	2.6	17
194	Selfâ€assembled micelles prepared from poly(É›â€caprolactone)–poly(ethylene glycol) and poly(É›â€caprolactone/glycolide)–poly(ethylene glycol) block copolymers for sustained drug delivery. Journal of Applied Polymer Science, 2018, 135, 45732.	1.3	17
195	Nanoarchitectonicâ€Based Material Platforms for Environmental and Bioprocessing Applications. Chemical Record, 2019, 19, 1891-1912.	2.9	17
196	Morphology and Melt Crystallization of PCLâ€₽EG Diblock Copolymers. Macromolecular Chemistry and Physics, 2008, 209, 1836-1844.	1.1	16
197	Optogenetic Modulation and Reprogramming of Bacteriorhodopsinâ€Transfected Human Fibroblasts on Selfâ€Assembled Fullerene C60 Nanosheets. Advanced Biology, 2019, 3, e1800254.	3.0	16
198	Enhanced Biocompatibility and Differentiation Capacity of Mesenchymal Stem Cells on Poly(dimethylsiloxane) by Topographically Patterned Dopamine. ACS Applied Materials & Interfaces, 2020, 12, 44393-44406.	4.0	16

#	Article	IF	CITATIONS
199	Electromagnetic Shielding Effectiveness and Conductivity of PTFE/Ag/MWCNT Conductive Fabrics Using the Screen Printing Method. Sustainability, 2020, 12, 5899.	1.6	16
200	Regulatory RNAs, microRNA, long-non coding RNA and circular RNA roles in colorectal cancer stem cells. World Journal of Gastrointestinal Oncology, 2022, 14, 748-764.	0.8	16
201	Lipase-catalysed degradation of copolymers prepared from É›-caprolactone and dl-lactide. Polymer Degradation and Stability, 2009, 94, 688-692.	2.7	15
202	Haemo―and cytocompatibility of bioresorbable homo―and copolymers prepared from 1,3â€ŧrimethylene carbonate, lactides, and ϵâ€caprolactone. Journal of Biomedical Materials Research - Part A, 2010, 94A, 396-407.	2.1	15
203	Synthesis and characterization of heatâ€resistant <i>N</i> â€phenylmaleimide–styrene–maleic anhydride copolymers and application in acrylonitrile–butadiene–styrene resin. Journal of Applied Polymer Science, 2012, 126, 169-178.	1.3	15
204	Long-Term Regeneration and Functional Recovery of a 15 mm Critical Nerve Gap Bridged by <i>Tremella fuciformis</i> Polysaccharide-Immobilized Polylactide Conduits. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-12.	0.5	15
205	Correlating cell transfectability and motility on materials with different physico-chemical properties. Acta Biomaterialia, 2015, 28, 55-63.	4.1	15
206	Physicochemical, textural, rheological and microstructural properties of protein isolate gels produced from European eel (Anguilla anguilla) by heat-induced gelation process. Food Hydrocolloids, 2018, 82, 278-287.	5.6	15
207	Decellularized liver matrix as substrates for rescue of acute hepatocytes toxicity. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1592-1602.	1.6	15
208	Biobased dynamic hydrogels by reversible imine bonding for controlled release of thymopentin. Materials Science and Engineering C, 2021, 127, 112210.	3.8	15
209	Nanogold-Carried Graphene Oxide: Anti-Inflammation and Increased Differentiation Capacity of Mesenchymal Stem Cells. Nanomaterials, 2021, 11, 2046.	1.9	15
210	Novel Thermosensitive Polymer-Modified Liposomes as Nano-Carrier of Hydrophobic Antitumor Drugs. Journal of Pharmaceutical Sciences, 2020, 109, 2544-2552.	1.6	15
211	Melt crystallization and morphology of poly(εâ€caprolactone)â€poly(ethylene glycol) diblock copolymers with different compositions and molecular weights. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 286-293.	2.4	14
212	Stereocomplexâ€induced gelation properties of polylactide/poly(ethylene glycol) diblock and triblock copolymers. Journal of Applied Polymer Science, 2011, 122, 1599-1606.	1.3	14
213	Preparation, blood coagulation and cell compatibility evaluation of chitosan-graft-polylactide copolymers. Biomedical Materials (Bristol), 2014, 9, 015007.	1.7	14
214	Enhanced Autophagy of Adipose-Derived Stem Cells Grown on Chitosan Substrates. BioResearch Open Access, 2015, 4, 89-96.	2.6	14
215	<scp>R</scp> ecent development of transcatheter closure of atrial septal defect and patent foramen ovale with occluders. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 433-443.	1.6	14
216	Intervertebral disc needle puncture injury can be repaired using a gelatin–poly (γ-glutamic acid) hydrogel: an in vitro bovine biomechanical validation. European Spine Journal, 2018, 27, 2631-2638.	1.0	14

#	Article	IF	CITATIONS
217	An anti-inflammatory gelatin hemostatic agent with biodegradable polyurethane nanoparticles for vulnerable brain tissue. Materials Science and Engineering C, 2021, 121, 111799.	3.8	14
218	Three-dimensional printing of chitosan cryogel as injectable and shape recoverable scaffolds. Carbohydrate Polymers, 2022, 285, 119228.	5.1	14
219	Biodegradable micelles from a hyaluronan-poly(ε-caprolactone) graft copolymer as nanocarriers for fibroblast growth factor 1. Journal of Materials Chemistry B, 2013, 1, 5977.	2.9	13
220	A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting. Materials Science and Engineering C, 2018, 82, 69-79.	3.8	13
221	Bioresorbable hydrogels prepared by photo-initiated crosslinking of diacrylated PTMC-PEG-PTMC triblock copolymers as potential carrier of antitumor drugs. Saudi Pharmaceutical Journal, 2020, 28, 290-299.	1.2	13
222	Development of emulsion gelatin gels for food application: Physicochemical, rheological, structural and thermal characterization. International Journal of Biological Macromolecules, 2021, 182, 1-10.	3.6	13
223	Design and Development of a Novel Frozen-Form Additive Manufacturing System for Tissue Engineering Applications. 3D Printing and Additive Manufacturing, 2016, 3, 216-225.	1.4	12
224	Synthesis and self-assembly of AB2-type amphiphilic copolymers from biobased hydroxypropyl methyl cellulose and poly(L-lactide). Carbohydrate Polymers, 2019, 211, 133-140.	5.1	12
225	Molecular Structures and Mechanisms of Waterborne Biodegradable Polyurethane Nanoparticles. Computational and Structural Biotechnology Journal, 2019, 17, 110-117.	1.9	12
226	Thermoresponsive and Conductive Chitosan-Polyurethane Biocompatible Thin Films with Potential Coating Application. Polymers, 2021, 13, 326.	2.0	12
227	Evaluation of bioresorbable polymers as potential stent material— <i>In vivo</i> degradation behavior and histocompatibility. Journal of Applied Polymer Science, 2017, 134, .	1.3	11
228	Self-assembled filomicelles prepared from polylactide-poly(ethylene glycol) diblock copolymers for sustained delivery of cycloprotoberberine derivatives. Saudi Pharmaceutical Journal, 2018, 26, 342-348.	1.2	11
229	Life science nanoarchitectonics at interfaces. Materials Chemistry Frontiers, 2021, 5, 1018-1032.	3.2	11
230	Identification of potential descriptors of water-soluble fullerene derivatives responsible for antitumor effects on lung cancer cells via QSAR analysis. Computational and Structural Biotechnology Journal, 2021, 19, 812-825.	1.9	11
231	Antioxidant Activity and Biocompatibility of Fructo-Polysaccharides Extracted from a Wild Species of Ornithogalum from Lebanon. Antioxidants, 2021, 10, 68.	2.2	11
232	Sequence distribution, thermal properties, and crystallization studies of poly(trimethylene) Tj ETQq0 0 0 rgBT /Ov Polymer Science, 2009, 111, 2751-2760.	verlock 10 1.3	Tf 50 147 Tc 10
233	Novel Poly(L-lactide-co- <i>ε</i> -caprolactone) Matrices Obtained with the Use of Zr[Acac] _{4} as Nontoxic Initiator for Long-Term Release of Immunosuppressive Drugs. BioMed Research International, 2013, 2013, 1-11.	0.9	10
234	Fabrication and characterization of composites composed of a bioresorbable polyester matrix and surface modified calcium carbonate whisker for bone regeneration. Polymers for Advanced Technologies, 2017, 28, 1892-1901.	1.6	10

#	Article	IF	CITATIONS
235	Effects of chemical composition on the inÂvitro degradation of micelles prepared from poly(D,L-lactide-co-glycolide)-poly(ethylene glycol) block copolymers. Polymer Degradation and Stability, 2018, 158, 202-211.	2.7	10
236	Synthesis and Self-Assembly of Hydroxypropyl Methyl Cellulose- <i>block</i> -Poly(ε-caprolactone) Copolymers as Nanocarriers of Lipophilic Drugs. ACS Applied Nano Materials, 2020, 3, 4367-4375.	2.4	10
237	<p>Fullerene Derivatives as Lung Cancer Cell Inhibitors: Investigation of Potential Descriptors Using QSAR Approaches</p> . International Journal of Nanomedicine, 2020, Volume 15, 2485-2499.	3.3	10
238	Molecular interaction mechanisms of glycol chitosan self-healing hydrogel as a drug delivery system for gemcitabine and doxorubicin. Computational and Structural Biotechnology Journal, 2022, 20, 700-709.	1.9	10
239	Hydrolytic degradation of glycolide/L-lactide/É›-caprolactone terpolymers initiated by zirconium(IV) acetylacetonate. Journal of Applied Polymer Science, 2007, 103, 2451-2456.	1.3	9
240	Enzyme-Catalyzed Degradation of Biodegradable Polymers Derived from Trimethylene Carbonate and Glycolide by Lipases from Candida Antarctica and Hog Pancreas. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 1355-1368.	1.9	9
241	Composites of poly(<scp>l</scp> -lactide-trimethylene carbonate-glycolide) and surface modified calcium carbonate whiskers as a potential bone substitute material. RSC Advances, 2016, 6, 57762-57772.	1.7	9
242	Biocompatibility of filomicelles prepared from poly(ethylene glycol)-polylactide diblock copolymers as potential drug carrier. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1677-1694.	1.9	9
243	Effective naked plasmid DNA delivery into stem cells by microextrusion-based transient-transfection system for in situ cardiac repair. Cytotherapy, 2020, 22, 70-81.	0.3	9
244	Physical Gold Nanoparticle-Decorated Polyethylene Glycol-Hydroxyapatite Composites Guide Osteogenesis and Angiogenesis of Mesenchymal Stem Cells. Biomedicines, 2021, 9, 1632.	1.4	9
245	Aggregates and hydrogels prepared by self-assembly of amphiphilic copolymers with surfactants. Journal of Colloid and Interface Science, 2012, 374, 127-134.	5.0	8
246	Biocompatibility of thermoâ€responsive PNIPAAmâ€PLLAâ€PNIPAAm triblock copolymer as potential drug carrier. Polymers for Advanced Technologies, 2015, 26, 1567-1574.	1.6	8
247	Polymer Surface Interacts with Calcium in Aqueous Media to Induce Stem Cell Assembly. Advanced Healthcare Materials, 2015, 4, 2186-2194.	3.9	8
248	Fast isolation and expansion of multipotent cells from adipose tissue based on chitosan-selected primary culture. Biomaterials, 2015, 65, 154-162.	5.7	8
249	Protein adsorption and macrophage uptake of zwitterionic sulfobetaine containing micelles. Colloids and Surfaces B: Biointerfaces, 2018, 167, 252-259.	2.5	8
250	Biocompatibility and paclitaxel/cisplatin dual-loading of nanotubes prepared from poly(ethylene) Tj ETQq0 0 0 rgE Pharmaceutical Journal, 2019, 27, 1025-1035.	3T /Overloo 1.2	ck 10 Tf 50 3 8
251	Mesenchymal stem cells from a hypoxic culture improve nerve regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1804-1814.	1.3	8
252	Selfâ€assembled micelles prepared from poly(<scp>D</scp> , <scp>L</scp> â€lactideâ€coâ€glycolide)â€poly(ethylene glycol) block copolymers for sustained release of valsartan. Polymers for Advanced Technologies, 2021, 32, 1262-1271.	1.6	8

#	Article	IF	CITATIONS
253	Adipose-Derived Mesenchymal Stem Cells From a Hypoxic Culture Improve Neuronal Differentiation and Nerve Repair. Frontiers in Cell and Developmental Biology, 2021, 9, 658099.	1.8	8
254	Extracting information on the surface monomer unit distribution of PLGA by ToFâ€SIMS. Surface and Interface Analysis, 2008, 40, 1168-1175.	0.8	7
255	Behavior of Endothelial Cells Regulated by a Dynamically Changed Microenvironment of Biodegradable PLLAâ€PC. Macromolecular Bioscience, 2009, 9, 413-420.	2.1	7
256	Structure and properties of heatâ€resistant ABS resins innovated by NSM random copolymer. Polymer Composites, 2013, 34, 920-928.	2.3	7
257	Biocompatibility evaluation of selfâ€essembled micelles prepared from poly(lactideâ€coâ€glycolide)â€poly(ethylene glycol) diblock copolymers. Polymers for Advanced Technologies, 2018, 29, 205-215.	1.6	7
258	Biocompatibility and degradation studies of poly(L-lactide-co-trimethylene carbonate) copolymers as cardiac occluders. Materialia, 2019, 7, 100414.	1.3	7
259	Potential of stem cell therapy in intracerebral hemorrhage. Molecular Biology Reports, 2020, 47, 4671-4680.	1.0	7
260	Sardinelle protein isolate as a novel material for oil microencapsulation: Novel alternative for fish by-products valorisation. Materials Science and Engineering C, 2020, 116, 111164.	3.8	7
261	Revealing the Phagosomal pH Regulation and Inflammation of Macrophages after Endocytosing Polyurethane Nanoparticles by A Ratiometric pH Nanosensor. Advanced Biology, 2021, 5, 2000200.	1.4	7
262	The Effect of Laser Preexposure on Seeding Endothelial Cells to a Biomaterial Surface. Photomedicine and Laser Surgery, 2010, 28, S-37-S-42.	2.1	6
263	Microwell Chips for Selection of Bioâ€macromolecules that Increase the Differentiation Capacities of Mesenchymal Stem Cells. Macromolecular Bioscience, 2013, 13, 1100-1109.	2.1	6
264	Segmentation and tracking of stem cells in time lapse microscopy to quantify dynamic behavioral changes during spheroid formation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 491-502.	1.1	6
265	Biocompatible Nanogold Carrier Coated with Hyaluronic Acid for Efficient Delivery of Plasmid or siRNA to Mesenchymal Stem Cells. ACS Applied Bio Materials, 2019, 2, 1017-1030.	2.3	6
266	Design of Bioinspired Emulsified Composite European Eel Gelatin and Protein Isolate-Based Food Packaging Film: Thermal, Microstructural, Mechanical, and Biological Features. Coatings, 2020, 10, 26.	1.2	6
267	Nanoparticle-mediated tumor vaccines for personalized therapy: preparing tumor antigens <i>in vivo</i> or <i>ex vivo</i> ?. Journal of Materials Chemistry B, 2021, 9, 2352-2366.	2.9	6
268	Visualization of peripheral nerve regeneration. Neural Regeneration Research, 2014, 9, 997.	1.6	6
269	Influence of racemization on stereocomplexâ€induced gelation of waterâ€soluble polylactide–poly(ethylene glycol) block copolymers. Polymer International, 2010, 59, 1077-1083.	1.6	5
270	Human endothelial cell response to polyurethane–gold nanocomposites. Gold Bulletin, 2012, 45, 161-170.	1.1	5

#	Article	IF	CITATIONS
271	Composites of poly(<scp>L</scp> â€lactideâ€trimethylene carbonateâ€glycolide) and surface modified SBAâ€15 as bone repair material. Polymers for Advanced Technologies, 2018, 29, 1322-1333.	1.6	5
272	Drug release and biocompatibility of selfâ€assembled micelles prepared from poly (É›â€caprolactone/glycolide)â€poly (ethylene glycol) block copolymers. Polymers for Advanced Technologies, 2019, 30, 40-50.	1.6	5
273	Anti-Inflammatory Fibronectin-AgNP for Regulation of Biological Performance and Endothelial Differentiation Ability of Mesenchymal Stem Cells. International Journal of Molecular Sciences, 2021, 22, 9262.	1.8	5
274	Surface Modification by Nanobiomaterials for Vascular Tissue Engineering Applications. Current Medicinal Chemistry, 2020, 27, 1634-1646.	1.2	5
275	Synthesis, Characterization and Self-assembly Behavior of Chitosan-graftpolylactide Copolymers. Nanoscience and Nanotechnology - Asia, 2012, 2, 38-46.	0.3	5
276	Preparation and properties of novel poly(propylene oxide)â€ <i>block</i> â€polylactideâ€based polyurethane foams. Polymer Engineering and Science, 2013, 53, 343-352.	1.5	4
277	Efficient Gene Silencing in Mesenchymal Stem Cells by Substrate-Mediated RNA Interference. Tissue Engineering - Part C: Methods, 2014, 20, 916-930.	1.1	4
278	Stability of biodegradable waterborne polyurethane films in buffered saline solutions. Biointerphases, 2015, 10, 031006.	0.6	4
279	Self-patterning of adipose-derived mesenchymal stem cells and chondrocytes cocultured on hyaluronan-grafted chitosan surface. Biointerphases, 2016, 11, 011011.	0.6	4
280	Ag/GNS conductive laminated woven fabrics for EMI shielding applications. Materials and Manufacturing Processes, 2021, 36, 1693-1700.	2.7	4
281	Correlation between the composition of PLA-based folate targeted micelles and release of phosphonate derivative of betulin. Journal of Drug Delivery Science and Technology, 2021, 65, 102717.	1.4	4
282	Synthesis and characterization of degradable triarm low unsaturated poly(propylene) Tj ETQq0 0 0 rgBT /Overlock	≀ 10 Tf 50 3	3 <u>9</u> 2 Td (oxid
283	Effects of stereocomplexation on the physicochemical behavior of PLA/PEG block copolymers in aqueous solution. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1352-1355.	2.4	3
284	Structure characterizations and protein resistance of chitosan membranes selectively crosslinked by poly(ethylene glycol) dimethacrylate. Cellulose, 2014, 21, 1431-1444.	2.4	3
285	Synthesis of Block Copolymer Brush by RAFT and Click Chemistry and Its Self-Assembly as a Thin Film. Molecules, 2020, 25, 4774.	1.7	3
286	Quantitative Bioimage Analysis of Passaging Effect on the Migratory Behavior of Human Mesenchymal Stem Cells During Spheroid Formation. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 394-406.	1.1	3
287	Synthesis, Structures and Characterization of Triarm PPO-PDLAPLLA Block Copolymers and Its Stereocomplex Crystallization Behavior. Acta Chimica Sinica, 2012, 70, 881.	0.5	3
288	Synthesis of polylactide/poly(ethylene glycol) diblock copolymers with functional endgroups. Polymer International, 2013, 62, 1014-1021.	1.6	2

#	Article	IF	CITATIONS
289	Synthesis, Characterization and Self-assembly Behavior of Chitosan-graftpolylactide Copolymers. Nanoscience and Nanotechnology - Asia, 2012, 2, 38-46.	0.3	2
290	Micelles formed by selfâ€assembling of low molecular weight phosphorylcholineâ€containing poly(L″actide). Polymers for Advanced Technologies, 2012, 23, 1357-1361.	1.6	2
291	The electromagnetic shielding effectiveness of laminated fabrics using electronic printing. Polymer Composites, 2020, 41, 2568-2577.	2.3	2
292	Biocompatibility, drug release, and antiâ€tumor effect of pH â€sensitive micelles prepared from poly(2â€ethylâ€2â€oxazoline)â€poly(DL â€lactide) block copolymers. Polymers for Advanced Technologies, 202 32, 4142-4152.	l,1.6	2
293	Degradation of Biodegradable Aliphatic Polyesters. , 2005, , 335-352.		2
294	Creative transformation of biomedical polyurethanes: from biostable tubing to biodegradable smart materials. Journal of Polymer Research, 2022, 29, 1.	1.2	2
295	Engineered Bacteriorhodopsin May Induce Lung Cancer Cell Cycle Arrest and Suppress Their Proliferation and Migration. Molecules, 2021, 26, 7344.	1.7	2
296	In situ photoâ€crosslinked hydrogels prepared from acrylated 4â€armâ€poly(ethylene) Tj ETQq0 0 0 rgBT /Overloo Technologies, 2022, 33, 2620-2631.	ck 10 Tf 50 1.6	0 467 Td (gly 2
297	Cell Positioning by Patterned Nanowires. Journal of Inorganic and Organometallic Polymers and Materials, 2015, 25, 312-317.	1.9	1
298	Towards Nanomaterials-Based Biocompatible and Biodegradable Strain Sensors for Healthcare and Medical Applications. Proceedings (mdpi), 2020, 56, 17.	0.2	1
299	Degradable and Bioresorbable Polymers. , 2015, , 2288-2306.		0
300	Selfâ€Assembled Nanosheets: Optogenetic Modulation and Reprogramming of Bacteriorhodopsinâ€Transfected Human Fibroblasts on Selfâ€Assembled Fullerene C60 Nanosheets (Adv.) Tj ETQe	q 0.0 0 rgB	TøOverlock :

301	Correlations between rheological and mechanical properties of fructo-polysaccharides extracted from Ornithogalum billardieri as biobased adhesive for biomedical applications. International Journal of Biological Macromolecules, 2022, 209, 1100-1110.	3.6	0