Ying-Cheng Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997182/publications.pdf

Version: 2024-02-01

51	1,587	21 h-index	40
papers	citations		g-index
51	51	51	1059
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Efficient quantum memory for photonic polarization qubits generated by cavity-enhanced spontaneous parametric downconversion. Optics Express, 2022, 30, 19944.	3.4	2
2	Room-temperature biphoton source with a spectral brightness near the ultimate limit. Physical Review Research, 2022, 4, .	3.6	10
3	Efficient frequency conversion based on resonant four-wave mixing. Optics Letters, 2021, 46, 681.	3.3	5
4	A weakly-interacting many-body system of Rydberg polaritons based on electromagnetically induced transparency. Communications Physics, 2021, 4, .	5. 3	6
5	Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme. Optics Express, 2021, 29, 4632.	3.4	14
6	Low-loss high-fidelity frequency beam splitter with tunable split ratio based on electromagnetically induced transparency. Physical Review Research, 2021, 3, .	3.6	12
7	Memory-based optical polarization conversion in a double-\$\$Lambda\$\$ atomic system with degenerate Zeeman states. Scientific Reports, 2020, 10, 13990.	3.3	5
8	Subradiance dynamics in a singly excited chirally coupled atomic chain. Physical Review A, 2020, 101, .	2.5	17
9	Broadband coherent optical memory based on electromagnetically induced transparency. Physical Review A, 2020, 102, .	2.5	16
10	Quantum storage and manipulation of heralded single photons in atomic memories based on electromagnetically induced transparency. Physical Review Research, 2020, 2, .	3.6	10
11	Theoretical study of a memory-based optical converter with degenerate Zeeman states. Physical Review A, 2019, 100, .	2.5	3
12	Towards highly-efficient single-photon storage based on electromagnetically induced transparency. , 2019, , .		0
13	Ultrabright, narrow-band photon-pair source for atomic quantum memories. Quantum Science and Technology, 2018, 3, 034005.	5. 8	22
14	Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency. Physical Review Letters, 2018, 120, 183602.	7.8	175
15	<pre><mml:math xmins:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="normal">i></mml:mi></mml:math> -enhanced gray-molasses cooling of cesium atoms on the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>D</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math></pre>	2.5 > <td>17 sub></td>	17 sub>
16	line. Physical Review A, 2016, 96, . Absolute frequency of cesium 6S _{1/2} –6D _{3/2} hyperfine transition with a precision to nuclear magnetic octupole interaction. Optics Letters, 2018, 43, 1954.	3.3	8
17	Cooperative light scattering from helical-phase-imprinted atomic rings. Scientific Reports, 2018, 8, 9570.	3.3	11
18	Spectral shaping of cascade emissions from multiplexed cold atomic ensembles. Physical Review A, 2016, 93, .	2.5	9

#	Article	IF	CITATIONS
19	Cooperative single-photon subradiant states. Physical Review A, 2016, 94, .	2.5	31
20	Large Cross-Phase Modulations at the Few-Photon Level. Physical Review Letters, 2016, 117, 203601.	7.8	58
21	High conversion efficiency in resonant four-wave mixing processes. Optics Express, 2016, 24, 1008.	3.4	28
22	Interaction between two stopped light pulses. , 2014, , .		0
23	Coherence properties of amplified slow light by four-wave mixing. Optics Letters, 2014, 39, 3394.	3.3	12
24	Low-light-level four-wave mixing by quantum interference. Physical Review A, 2014, 89, .	2.5	29
25	Cold atomic media with ultrahigh optical depths. Physical Review A, 2014, 90, .	2.5	36
26	High-storage efficiency EIT-based optical memory. , 2014, , .		2
27	Coherent Optical Memory with High Storage Efficiency and Large Fractional Delay. Physical Review Letters, 2013, 110, 083601.	7.8	164
28	Enhanced all-optical switching with double slow light pulses. Physical Review A, 2012, 86, .	2.5	8
29	Demonstration of the Interaction between Two Stopped Light Pulses. Physical Review Letters, 2012, 108, 173603.	7.8	63
30	Field-induced long-lived supermolecules. Physical Review A, 2012, 85, .	2.5	6
31	Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels. Physical Review A, 2011, 83, .	2.5	58
32	Low-Light-Level Cross-Phase Modulation with Double Slow Light Pulses. Physical Review Letters, 2011, 106, 193006.	7.8	78
33	Creation of arbitrary spectra with an acousto-optic modulator and an injection-locked diode laser. Review of Scientific Instruments, 2011, 82, 083108.	1.3	2
34	Intense SrF radical beam for molecular cooling experiments. Review of Scientific Instruments, 2009, 80, 113111.	1.3	5
35	Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density. Optics Express, 2008, 16, 3753.	3.4	52
36	Kinetic energy oscillations in annular regions of ultracold neutral plasmas. European Physical Journal D, 2006, 40, 51-56.	1.3	11

#	Article	IF	CITATIONS
37	Absorption imaging and spectroscopy of ultracold neutral plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, S351-S362.	1.5	15
38	Spectroscopic Determination of thes-Wave Scattering Lengths of Sr86 and Sr88. Physical Review Letters, 2005, 95, 223002.	7.8	52
39	Absorption imaging of ultracold neutral plasmas. IEEE Transactions on Plasma Science, 2005, 33, 540-541.	1.3	0
40	Ultracold neutral plasmas. Plasma Physics and Controlled Fusion, 2005, 47, A297-A306.	2.1	3
41	Photoassociative Spectroscopy at Long Range in Ultracold Strontium. Physical Review Letters, 2005, 94, 083004.	7.8	57
42	Electron Screening and Kinetic-Energy Oscillations in a Strongly Coupled Plasma. Physical Review Letters, 2004, 93, 265003.	7.8	99
43	Using Absorption Imaging to Study Ion Dynamics in an Ultracold Neutral Plasma. Physical Review Letters, 2004, 92, 143001.	7.8	127
44	Quantization axes in coherent two-field spectroscopy. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1917.	2.1	4
45	QUANTUM INTERFERENCE IN ULTRACOLD ATOMS. , 2002, , .		0
46	Pump-probe spectroscopy of cold87Rbatoms in various polarization configurations. Physical Review A, 2001, 63, .	2.5	28
47	Observation of the quantum interference phenomenon induced by interacting dark resonances. Physical Review A, 2001, 64, .	2.5	80
48	Simple technique for directly and accurately measuring the number of atoms in a magneto-optical trap. Physical Review A, 2001, 64, .	2.5	23
49	Roles of degenerate Zeeman levels in electromagnetically induced transparency. Physical Review A, 2000, 61, .	2.5	40
50	Ion-size effect onTNin (R1â^'xPrx)Ba2Cu3O7â^'ysystems (R=Lu, Yb, Tm, Er, Y, Ho, Dy, Gd, Eu, Sm, and Nd) r. Physical Review B, 1994, 49, 15993-15999.	3.2	48
51	Ion-size effect on Tm and Tc in (R1â^'xPrx)Ba2Cu3O7 systems (R = Yb, Tm, Er, Ho, Dy, Gd, Eu, Sm, Nd and Y). Physica C: Superconductivity and Its Applications, 1993, 209, 19-22.	1.2	26