István Winkler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997176/publications.pdf

Version: 2024-02-01

210 papers

15,382 citations

18436 62 h-index 19690 117 g-index

222 all docs 222 docs citations

times ranked

222

5787 citing authors

#	Article	IF	CITATIONS
1	The concept of auditory stimulus representation in cognitive neuroscience Psychological Bulletin, 1999, 125, 826-859.	5.5	939
2	Neural Mechanisms of Involuntary Attention to Acoustic Novelty and Change. Journal of Cognitive Neuroscience, 1998, 10, 590-604.	1.1	758
3	â€~Primitive intelligence' in the auditory cortex. Trends in Neurosciences, 2001, 24, 283-288.	4.2	726
4	Involuntary Attention and Distractibility as Evaluated with Event-Related Brain Potentials. Audiology and Neuro-Otology, 2000, 5, 151-166.	0.6	567
5	Memory-based or afferent processes in mismatch negativity (MMN): A review of the evidence. Psychophysiology, 2005, 42, 25-32.	1.2	533
6	Interpreting the Mismatch Negativity. Journal of Psychophysiology, 2007, 21, 147-163.	0.3	474
7	Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends in Cognitive Sciences, 2009, 13, 532-540.	4.0	474
8	Newborn infants detect the beat in music. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2468-2471.	3.3	451
9	Auditory processing that leads to conscious perception: A unique window to central auditory processing opened by the mismatch negativity and related responses. Psychophysiology, 2011, 48, 4-22.	1.2	368
10	Phase Entrainment of Human Delta Oscillations Can Mediate the Effects of Expectation on Reaction Speed. Journal of Neuroscience, 2010, 30, 13578-13585.	1.7	364
11	Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Research, 1996, 742, 239-252.	1.1	318
12	Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP) Journal of Experimental Psychology: Learning Memory and Cognition, 1993, 19, 909-921.	0.7	297
13	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings. Psychophysiology, 1998, 35, 211-224.	1.2	280
14	Brain responses reveal the learning of foreign language phonemes. Psychophysiology, 1999, 36, 638-642.	1.2	261
15	Memory-based detection of task-irrelevant visual changes. Psychophysiology, 2002, 39, 869-873.	1.2	221
16	Do N1/MMN, P3a, and RON form a strongly coupled chain reflecting the three stages of auditory distraction?. Biological Psychology, 2008, 79, 139-147.	1.1	220
17	Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN) Tj ETQq 11 Journal of Psychophysiology, 2012, 83, 132-143.	1 0.784314 0.5	4 rgBT /Overlo 202
18	Newborn infants can organize the auditory world. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11812-11815.	3.3	186

#	Article	IF	CITATIONS
19	Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations. Cognitive Brain Research, 1999, 7, 357-369.	3.3	177
20	I Heard That Coming: Event-Related Potential Evidence for Stimulus-Driven Prediction in the Auditory System. Journal of Neuroscience, 2009, 29, 8447-8451.	1.7	173
21	Top-down control over involuntary attention switching in the auditory modality. Psychonomic Bulletin and Review, 2003, 10, 630-637.	1.4	167
22	The role of attention in the formation of auditory streams. Perception & Psychophysics, 2007, 69, 136-152.	2.3	147
23	Top-down effects can modify the initially stimulus-driven auditory organization. Cognitive Brain Research, 2002, 13, 393-405.	3.3	143
24	Combined mapping of human auditory EEG and MEG responses. Electroencephalography and Clinical Neurophysiology - Evoked Potentials, 1998, 108, 370-379.	2.0	132
25	The role of predictive models in the formation of auditory streams. Journal of Physiology (Paris), 2006, 100, 154-170.	2.1	132
26	Preattentive Binding of Auditory and Visual Stimulus Features. Journal of Cognitive Neuroscience, 2005, 17, 320-339.	1.1	122
27	Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN). Psychophysiology, 2001, 38, 359-365.	1.2	117
28	Simultaneously active pre-attentive representations of local and global rules for sound sequences in the human brain. Cognitive Brain Research, 2001, 12, 131-144.	3.3	115
29	MMN and attention: Competition for deviance detection. Psychophysiology, 2003, 40, 430-435.	1.2	112
30	Probing Attentive and Preattentive Emergent Meter in Adult Listeners without Extensive Music Training. Music Perception, 2009, 26, 377-386.	0.5	112
31	Event-related brain potentials reflect traces of echoic memory in humans. Perception & Psychophysics, 1993, 53, 443-449.	2.3	108
32	Dynamic sensory updating in the auditory system. Cognitive Brain Research, 2001, 12, 431-439.	3.3	107
33	Age-related differences in distraction and reorientation in an auditory task. Neurobiology of Aging, 2009, 30, 1157-1172.	1.5	103
34	Organizing sound sequences in the human brain: the interplay of auditory streaming and temporal integration. Brain Research, 2001, 897, 222-227.	1.1	102
35	Grouping of Sequential Sounds—An Event-Related Potential Study Comparing Musicians and Nonmusicians. Journal of Cognitive Neuroscience, 2004, 16, 331-338.	1.1	101
36	The Role of Large-Scale Memory Organization in the Mismatch Negativity Event-Related Brain Potential. Journal of Cognitive Neuroscience, 2001, 13, 59-71.	1.1	96

#	Article	IF	CITATIONS
37	From Sensory to Long-Term Memory. Experimental Psychology, 2005, 52, 3-20.	0.3	96
38	Processing acoustic change and novelty in newborn infants. European Journal of Neuroscience, 2007, 26, 265-274.	1.2	95
39	Mismatch negativity. NeuroReport, 1998, 9, 3809-3813.	0.6	94
40	Multistability in auditory stream segregation: a predictive coding view. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1001-1012.	1.8	94
41	The Effect of Small Variation of the Frequent Auditory Stimulus on the Event-Related Brain Potential to the Infrequent Stimulus. Psychophysiology, 1990, 27, 228-235.	1.2	92
42	Correlation dimension changes accompanying the occurrence of the mismatch negativity and the P3 event-related potential component. Electroencephalography and Clinical Neurophysiology, 1995, 95, 118-126.	0.3	91
43	Auditory organization of sound sequences by a temporal or numerical regularityâ€"a mismatch negativity study comparing musicians and non-musicians. Cognitive Brain Research, 2005, 23, 270-276.	3.3	90
44	Interactions between Transient and Long-Term Auditory Memory as Reflected by the Mismatch Negativity. Journal of Cognitive Neuroscience, 1996, 8, 403-415.	1.1	89
45	Mismatch negativity to pitch change: varied stimulus proportions in controlling effects of neural refractoriness on human auditory event-related brain potentials. Neuroscience Letters, 2003, 344, 79-82.	1.0	88
46	Regular patterns stabilize auditory streams. Journal of the Acoustical Society of America, 2010, 128, 3658-3666.	0.5	87
47	Neuronal populations in the human brain extracting invariant relationships from acoustic variance. Neuroscience Letters, 1999, 265, 179-182.	1.0	84
48	Newborn infants process pitch intervals. Clinical Neurophysiology, 2009, 120, 304-308.	0.7	83
49	ERPs and deviance detection: Visual mismatch negativity to repeated visual stimuli. Neuroscience Letters, 2006, 401, 178-182.	1.0	82
50	Detecting the temporal structure of sound sequences in newborn infants. International Journal of Psychophysiology, 2015, 96, 23-28.	0.5	80
51	Presentation rate and magnitude of stimulus deviance effects on human pre-attentive change detection. Neuroscience Letters, 1995, 193, 185-188.	1.0	79
52	Long-term exposure to noise impairs cortical sound processing and attention control. Psychophysiology, 2004, 41, 875-881.	1.2	78
53	Predictive Regularity Representations in Violation Detection and Auditory Stream Segregation: From Conceptual to Computational Models. Brain Topography, 2014, 27, 565-577.	0.8	75
54	Mismatch negativity is unaffected by top-down predictive information. NeuroReport, 2001, 12, 2209-2213.	0.6	74

#	Article	IF	Citations
55	MMN or no MMN: No magnitude of deviance effect on the MMN amplitude. Psychophysiology, 2008, 45, 60-69.	1.2	74
56	Pre-attentive auditory processing of lexicality. Brain and Language, 2004, 88, 54-67.	0.8	72
57	Modelling the Emergence and Dynamics of Perceptual Organisation in Auditory Streaming. PLoS Computational Biology, 2013, 9, e1002925.	1.5	72
58	Separating acoustic deviance from novelty during the first year of life: a review of event-related potential evidence. Frontiers in Psychology, 2013, 4, 595.	1.1	72
59	Temporal constraints of auditory event synthesis. NeuroReport, 1998, 9, 495-499.	0.6	71
60	Processing abstract auditory features in the human auditory cortex. Neurolmage, 2003, 20, 2245-2258.	2.1	71
61	Temporal integration of auditory stimulus deviance as reflected by the mismatch negativity. Neuroscience Letters, 1999, 264, 161-164.	1.0	70
62	Independent processing of changes in auditory single features and feature conjunctions in humans as indexed by the mismatch negativity. Neuroscience Letters, 1999, 266, 109-112.	1.0	70
63	Auditory perceptual objects as generative models: Setting the stage for communication by sound. Brain and Language, 2015, 148, 1-22.	0.8	68
64	Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Cognitive Brain Research, 2005, 25, 291-299.	3.3	67
65	Familiarity Affects the Processing of Task-irrelevant Auditory Deviance. Journal of Cognitive Neuroscience, 2005, 17, 1704-1713.	1.1	65
66	Event-related potential correlates of sound duration: similar pattern from birth to adulthood. NeuroReport, 2001, 12, 3777-3781.	0.6	64
67	Preattentive auditory context effects. Cognitive, Affective and Behavioral Neuroscience, 2003, 3, 57-77.	1.0	61
68	Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans. Neuroscience Letters, 1992, 140, 239-242.	1.0	59
69	Two separate codes for missing-fundamental pitch in the human auditory cortex. Journal of the Acoustical Society of America, 1997, 102, 1072-1082.	0.5	57
70	Auditory temporal grouping in newborn infants. Psychophysiology, 2007, 44, 697-702.	1.2	56
71	Largeâ€scale network organization of EEG functional connectivity in newborn infants. Human Brain Mapping, 2017, 38, 4019-4033.	1.9	56
72	The development of the perceptual organization of sound by frequency separation in 5–11-year-old children. Hearing Research, 2007, 225, 117-127.	0.9	55

#	Article	IF	Citations
73	Steady-state responses from the cat auditory cortex. Hearing Research, 1990, 45, 41-50.	0.9	54
74	Preattentive processing of auditory spatial information in humans. Neuroscience Letters, 1998, 242, 49-52.	1.0	53
75	Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects. Cognitive Brain Research, 2005, 25, 169-179.	3.3	53
76	Newborn Infants Detect Cues of Concurrent Sound Segregation. Developmental Neuroscience, 2015, 37, 172-181.	1.0	52
77	Can Echoic Memory Store Two Traces Simultaneously? A Study of Event-Related Brain Potentials. Psychophysiology, 1992, 29, 337-349.	1.2	51
78	Neural representation for the temporal structure of sound patterns. NeuroReport, 1995, 6, 690-694.	0.6	51
79	Auditory stream segregation processes operate similarly in school-aged children and adults. Hearing Research, 2001, 153, 108-114.	0.9	50
80	Temporary and longer term retention of acoustic information. Psychophysiology, 2002, 39, 530-534.	1.2	49
81	Human auditory cortex tracks task-irrelevant sound sources. NeuroReport, 2003, 14, 2053-2056.	0.6	49
82	N1 and the mismatch negativity are spatiotemporally distinct ERP components: Disruption of immediate memory by auditory distraction can be related to N1. Psychophysiology, 2007, 44, 530-540.	1.2	47
83	Predictive coding in auditory perception: challenges and unresolved questions. European Journal of Neuroscience, 2020, 51, 1151-1160.	1.2	46
84	Event-related brain potentials reveal covert distractibility in closed head injuries. NeuroReport, 1999, 10, 2125-2129.	0.6	44
85	Visual temporal window of integration as revealed by the visual mismatch negativity event-related potential to stimulus omissions. Brain Research, 2006, 1104, 129-140.	1.1	44
86	Visual Object Representations Can Be Formed outside the Focus of Voluntary Attention: Evidence from Event-related Brain Potentials. Journal of Cognitive Neuroscience, 2010, 22, 1179-1188.	1.1	44
87	Maternal mindfulness and anxiety during pregnancy affect infants' neural responses to sounds. Social Cognitive and Affective Neuroscience, 2015, 10, 453-460.	1.5	44
88	Auditory multistability and neurotransmitter concentrations in the human brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160110.	1.8	44
89	Perceptual bistability in auditory streaming: How much do stimulus features matter?. Learning & Perception, 2013, 5, 73-100.	2.4	43
90	Is Beat Induction Innate or Learned?. Annals of the New York Academy of Sciences, 2009, 1169, 93-96.	1.8	41

#	Article	IF	Citations
91	Distraction in a continuous-stimulation detection task. Biological Psychology, 2010, 83, 229-238.	1.1	41
92	Preventing distraction: Assessing stimulus-specific and general effects of the predictive cueing of deviant auditory events. Biological Psychology, 2011, 87, 35-48.	1.1	41
93	Pre-attentive categorization of sounds by timbre as revealed by event-related potentials. NeuroReport, 1997, 8, 2571-2574.	0.6	40
94	Timbreâ€independent extraction of pitch in newborn infants. Psychophysiology, 2009, 46, 69-74.	1.2	40
95	Object representation in the human auditory system. European Journal of Neuroscience, 2006, 24, 625-634.	1.2	38
96	The temporal window of integration in elderly and young adults. Neurobiology of Aging, 2007, 28, 964-975.	1.5	38
97	Backward masking and visual mismatch negativity: Electrophysiological evidence for memory-based detection of deviant stimuli. Psychophysiology, 2007, 44, 610-619.	1.2	38
98	Stable individual characteristics in the perception of multiple embedded patterns in multistable auditory stimuli. Frontiers in Neuroscience, 2014, 8, 25.	1.4	38
99	Preattentive auditory change detection relies on unitary sensory memory representations. NeuroReport, 1996, 7, 2413-2418.	0.6	37
100	Changes in acoustic features and their conjunctions are processed by separate neuronal populations. NeuroReport, 2001, 12, 525-529.	0.6	37
101	Preattentive processing of spectral, temporal, and structural characteristics of acoustic regularities: A mismatch negativity study. Psychophysiology, 2001, 38, 92-98.	1.2	37
102	Representation of the standard: Stimulus context effects on the process generating the mismatch negativity component of event-related brain potentials. Psychophysiology, 2003, 40, 465-471.	1.2	37
103	How the human auditory system treats repetition amongst change. Neuroscience Letters, 2004, 368, 157-161.	1.0	37
104	From objective to subjective. NeuroReport, 1995, 6, 2317-2320.	0.6	35
105	Effects of ethanol and auditory distraction on forced choice reaction time. Alcohol, 1996, 13, 153-156.	0.8	35
106	What controls gain in gain control? Mismatch negativity (MMN), priors and system biases. Brain Topography, 2014, 27, 578-589.	0.8	35
107	Characterising switching behaviour in perceptual multi-stability. Journal of Neuroscience Methods, 2012, 210, 79-92.	1.3	34
108	Detecting violations of temporal regularities in waking and sleeping two-month-old infants. Biological Psychology, 2013, 92, 315-322.	1.1	34

#	Article	IF	CITATIONS
109	Mismatch negativity (MMN) to pitch change is susceptible to order-dependent bias. Frontiers in Neuroscience, 2014, 8, 180.	1.4	34
110	Computational Models of Auditory Scene Analysis: A Review. Frontiers in Neuroscience, 2016, 10, 524.	1.4	34
111	Transitional Probabilities Are Prioritized over Stimulus/Pattern Probabilities in Auditory Deviance Detection: Memory Basis for Predictive Sound Processing. Journal of Neuroscience, 2016, 36, 9572-9579.	1.7	34
112	Temporal integration: intentional sound discrimination does not modulate stimulus-driven processes in auditory event synthesis. Clinical Neurophysiology, 2002, 113, 1909-1920.	0.7	31
113	Predictive processing of pitch trends in newborn infants. Brain Research, 2015, 1626, 14-20.	1.1	31
114	Similar but separate systems underlie perceptual bistability in vision and audition. Scientific Reports, 2018, 8, 7106.	1.6	31
115	Brain responses reveal the learning of foreign language phonemes. , 1999, 36, 638.		31
116	The N1 hypothesis and irrelevant sound: evidence from token set size effects. Cognitive Brain Research, 2003, 18, 39-47.	3.3	30
117	Regularity Extraction from Non-Adjacent Sounds. Frontiers in Psychology, 2012, 3, 143.	1.1	30
118	Event-related potential correlates of sound organization: Early sensory and late cognitive effects. Biological Psychology, 2013, 93, 97-104.	1.1	29
119	Spectral and temporal stimulus characteristics in the processing of abstract auditory features. NeuroReport, 2003, 14, 715-718.	0.6	27
120	Impact of lower- vs. upper-hemifield presentation on automatic colour-deviance detection: A visual mismatch negativity study. Brain Research, 2012, 1472, 89-98.	1.1	26
121	Altering the primacy biasâ€"How does a prior task affect mismatch negativity?. Psychophysiology, 2014, 51, 437-445.	1.2	26
122	Simultaneous storage of two complex temporal sound patterns in auditory sensory memory. NeuroReport, 2002, 13, 1747-1751.	0.6	25
123	Loudness summation and the mismatch negativity event-related brain potential in humans. Psychophysiology, 2006, 43, 13-20.	1.2	25
124	Language context and phonetic change detection. Cognitive Brain Research, 2003, 17, 833-844.	3.3	24
125	Different roles of similarity and predictability in auditory stream segregation. Learning & Perception, 2013, 5, 37-54.	2.4	24
126	Surprising sequential effects on MMN. Biological Psychology, 2016, 116, 47-56.	1.1	23

#	Article	IF	CITATIONS
127	Stability of Perceptual Organisation in Auditory Streaming. , 2010, , 477-487.		23
128	Electric brain responses indicate preattentive processing of abstract acoustic regularities in children. NeuroReport, 2003, 14, 1411-1415.	0.6	22
129	The effects of rhythm and melody on auditory stream segregation. Journal of the Acoustical Society of America, 2014, 135, 1392-1405.	0.5	22
130	Probability dependence and functional separation of the object-related and mismatch negativity event-related potential components. NeuroImage, 2010, 50, 285-290.	2.1	21
131	Intracortical auditory evoked potentials during classical aversive conditioning in cats. Biological Psychology, 1988, 26, 339-350.	1.1	20
132	Auditory Event-related Potentials., 2013,, 1-29.		20
133	Auditory Perceptual Organization., 0,,.		20
134	Mismatch response (MMR) in neonates: Beyond refractoriness. Biological Psychology, 2016, 117, 26-31.	1.1	19
135	EEG signatures accompanying auditory figure-ground segregation. Neurolmage, 2016, 141, 108-119.	2.1	19
136	Neuronal Correlates of Informational and Energetic Masking in the Human Brain in a Multi-Talker Situation. Frontiers in Psychology, 2019, 10, 786.	1.1	19
137	Attention and speech-processing related functional brain networks activated in a multi-speaker environment. PLoS ONE, 2019, 14, e0212754.	1.1	19
138	Processing of novel sounds and frequency changes in the human auditory cortex: Magnetoencephalographic recordings., 1998, 35, 211.		19
139	Association between dopamine D4 receptor (DRD4) gene polymorphisms and novelty-elicited auditory event-related potentials in preschool children. Brain Research, 2006, 1103, 150-158.	1.1	18
140	Test-retest reliability of auditory ERP components in healthy 6-year-old children. NeuroReport, 2003, 14, 2121-2125.	0.6	17
141	Deviance detection in congruent audiovisual speech: Evidence for implicit integrated audiovisual memory representations. Biological Psychology, 2009, 82, 281-292.	1.1	17
142	Common neural mechanism for processing onset-to-onset intervals and silent gaps in sound sequences. NeuroReport, 2001, 12, 1783-1787.	0.6	16
143	Effects of temporal grouping on the memory representation of inter-tone relationships. Biological Psychology, 2005, 68, 41-60.	1.1	16
144	Biased relevance filtering in the auditory system: A test of confidence-weighted first-impressions. Biological Psychology, 2016, 115, 101-111.	1.1	16

#	Article	IF	CITATIONS
145	Foregroundâ€background discrimination indicated by eventâ€related brain potentials in a new auditory multistability paradigm. Psychophysiology, 2013, 50, 1239-1250.	1.2	15
146	Modulation-frequency acts as a primary cue for auditory stream segregation. Learning & Perception, 2013, 5, 149-161.	2.4	14
147	Assessing the validity of subjective reports in the auditory streaming paradigm. Journal of the Acoustical Society of America, 2016, 139, 1762-1772.	0.5	14
148	The cognitive resource and foreknowledge dependence of auditory perceptual inference. Neuropsychologia, 2018, 117, 379-388.	0.7	14
149	Recording Event-Related Brain Potentials: Application to Study Auditory Perception. Springer Handbook of Auditory Research, 2012, , 69-96.	0.3	14
150	Early differential processing of verbs and nouns in the human brain as indexed by event-related brain potentials. European Journal of Neuroscience, 2008, 27, 1561-1565.	1.2	13
151	Auditory size-deviant detection in adults and newborn infants. Biological Psychology, 2009, 82, 169-175.	1.1	13
152	Setting precedent: Initial feature variability affects the subsequent precision of regularly varying sound contexts. Psychophysiology, 2020, 57, e13528.	1.2	13
153	Special Report on the Impact of the COVID-19 Pandemic on Clinical EEG and Research and Consensus Recommendations for the Safe Use of EEG. Clinical EEG and Neuroscience, 2021, 52, 3-28.	0.9	13
154	Differences between human auditory event-related potentials (AERPs) measured at 2 and 4months after birth. International Journal of Psychophysiology, 2015, 97, 75-83.	0.5	12
155	Effects of multiple congruent cues on concurrent sound segregation during passive and active listening: An event-related potential (ERP) study. Biological Psychology, 2014, 100, 20-33.	1.1	11
156	The effects of attention and task-relevance on the processing of syntactic violations during listening to two concurrent speech streams. Cognitive, Affective and Behavioral Neuroscience, 2018, 18, 932-948.	1.0	11
157	Auditory Multi-Stability: Idiosyncratic Perceptual Switching Patterns, Executive Functions and Personality Traits. PLoS ONE, 2016, 11, e0154810.	1.1	11
158	Feature Predictability Flexibly Supports Auditory Stream Segregation or Integration. Acta Acustica United With Acustica, 2014, 100, 888-899.	0.8	10
159	Short-term cognitive fatigue effect on auditory temporal order judgments. Experimental Brain Research, 2020, 238, 305-319.	0.7	9
160	Newborn infants differently process adult directed and infant directed speech. International Journal of Psychophysiology, 2020, 147, 107-112.	0.5	9
161	Disruption of immediate memory and brain processes: an auditory ERP protocol. Brain Research Protocols, 2005, 14, 77-86.	1.7	8
162	Context effects on processing widely deviant sounds in newborn infants. Frontiers in Psychology, 2013, 4, 674.	1.1	8

#	Article	IF	CITATIONS
163	Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN)., 2001, 38, 359.		8
164	Units of sound representation and temporal integration: A mismatch negativity study. Neuroscience Letters, 2008, 436, 85-89.	1.0	7
165	A multimodal-corpus data collection system for cognitive acoustic scene analysis. , 2011, , .		7
166	CHAINS: Competition and cooperation between fragmentary event predictors in a Model of Auditory Scene Analysis., 2011,,.		7
167	Functional brain networks underlying idiosyncratic switching patterns in multi-stable auditory perception. Neuropsychologia, 2018, 108, 82-91.	0.7	7
168	The effects of speech processing units on auditory stream segregation and selective attention in a multi-talker (cocktail party) situation. Cortex, 2020, 130, 387-400.	1.1	7
169	Word class and word frequency in the MMN looking glass. Brain and Language, 2021, 218, 104964.	0.8	7
170	Change Detection in Complex Auditory Environment: Beyond the Oddball Paradigm., 2003,, 61-81.		7
171	The role of perceived source location in auditory stream segregation: Separation affects sound organization, common fate does not. Learning & Perception, 2013, 5, 55-72.	2.4	6
172	Do audio-visual motion cues promote segregation of auditory streams?. Frontiers in Neuroscience, 2014, 8, 64.	1.4	6
173	Processing of Horizontal Sound Localization Cues in Newborn Infants. Ear and Hearing, 2015, 36, 550-556.	1.0	6
174	EEG correlates of speech: Examination of event related potentials elicited by phoneme classes., 2017,,.		6
175	Temporal boundary of auditory event formation: An electrophysiological marker. International Journal of Psychophysiology, 2019, 140, 53-61.	0.5	5
176	Linguistic predictability influences auditory stimulus classification within two concurrent speech streams. Psychophysiology, 2020, 57, e13547.	1.2	5
177	Who said what? The effects of speech tempo on target detection and information extraction in a multiâ€ŧalker situation: An ERP and functional connectivity study. Psychophysiology, 2021, 58, e13747.	1.2	5
178	The role of temporal integration in auditory stream segregation Journal of Experimental Psychology: Human Perception and Performance, 2018, 44, 1683-1693.	0.7	5
179	3. In search for auditory object representations. Advances in Consciousness Research, 2010, , 71-106.	0.2	5
180	Auditory Perceptual Organization., 2015,, 240-252.		4

#	Article	IF	CITATIONS
181	Theta oscillations accompanying concurrent auditory stream segregation. International Journal of Psychophysiology, 2016, 106, 141-151.	0.5	3
182	Relative Pitch Perception and the Detection of Deviant Tone Patterns. Advances in Experimental Medicine and Biology, 2016, 894, 409-417.	0.8	3
183	Spatial cues can support auditory figure-ground segregation. Journal of the Acoustical Society of America, 2020, 147, 3814-3818.	0.5	3
184	Auditory Event-Related Potentials. , 2015, , 209-233.		3
185	Introductory notes on "Predictive information processing in the brain: Principles, neural mechanisms, and models― International Journal of Psychophysiology, 2012, 83, 119.	0.5	2
186	Cortical and intracerebral mismatch negativity: Animal model of stimulus comparison. International Journal of Psychophysiology, 1989, 7, 166-168.	0.5	1
187	Animal models in studying neuronal mechanisms of event related potentials. International Journal of Psychophysiology, 1989, 7, 255-256.	0.5	1
188	Predictive models in auditory stream segregation. International Journal of Psychophysiology, 2010, 77, 215-215.	0.5	1
189	Competing predictive regularity representations in an abstract model of auditory stream segregation (CHAINS). International Journal of Psychophysiology, 2012, 85, 317.	0.5	1
190	Comparison of skewness-based salient event detector algorithms in speech. , 2015, , .		1
191	Promoting the perception of two and three concurrent sound objects: An event-related potential study. International Journal of Psychophysiology, 2016, 107, 16-28.	0.5	1
192	Children's perception of visual and auditory ambiguity and its link to executive functions and creativity. Journal of Experimental Child Psychology, 2019, 184, 123-138.	0.7	1
193	Shorter Contextual Timescale Rather Than Memory Deficit in Aging. Cerebral Cortex, 2021, , .	1.6	1
194	Auditory Perceptual Organization., 2014,, 1-15.		1
195	Relevance to the higher order structure may govern auditory statistical learning in neonates. Scientific Reports, 2022, 12, 5905.	1.6	1
196	More efficient formation of longer-term representations for word forms at birth can be linked to better language skills at 2 years. Developmental Cognitive Neuroscience, 2022, , 101113.	1.9	1
197	Habituation of the early and middle latency components of the auditory evoked potentials in freely moving cat. Behavioural Brain Research, 1985, 16, 198-199.	1.2	0
198	Mismatch negativity in auditory stimulus series of varied standards. International Journal of Psychophysiology, 1989, 7, 439-440.	0.5	0

o

#	Article	IF	CITATIONS
199	Mismatch negativity in auditory recognition masking. International Journal of Psychophysiology, 1991, 11, 88.	0.5	0
200	Modeling the Modeling. American Journal of Psychology, 2003, 116, 336.	0.5	0
201	Modeling auditory stream segregation by predictive processes. , 2012, , .		0
202	Előbb az összetett, később az egyszerű: Csecsemők magasabb szintű hangfeldolgozási képességei előtti időszakban. Magyar Pszichologiai Szemle, 2015, 70, 675-721.	i a beszÃ@ 0.1)dÃOrtÃOs
203	Functional prerequisites of music perception in newborn infants: Mismatch negativity studies Frontiers in Human Neuroscience, 0, 2, .	1.0	0
204	Can we regard adaptation as memory?. Frontiers in Human Neuroscience, 0, 3, .	1.0	0
205	Processing of rhythmic structures in adults and newborn babies. Frontiers in Human Neuroscience, 0, 3, .	1.0	0
206	Adult-like pitch processing skills in newborn infants. Frontiers in Human Neuroscience, 0, 3, .	1.0	0
207	Breaking Down Bias. Frontiers in Human Neuroscience, 0, 7, .	1.0	0
208	Mit várhatunk a kognitÃν pszichológiától?. Magyar Pszichologiai Szemle, 2022, 76, 647-649.	0.1	0
209	Auditory Perceptual Organization., 2022,, 277-288.		0

210

Auditory Event-Related Potentials., 2022, , 238-262.