
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997175/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cost-effective schemes for minimizing the delay dispersion of the comparator in level-crossing ADCs applications. Microelectronics Journal, 2022, 121, 105384.	1.1	1
2	Low-Power High-Sensitivity Photoplethysmography Sensor for Wearable Health Monitoring System. IEEE Sensors Journal, 2021, 21, 16141-16151.	2.4	21
3	Design framework for inverter cascode transimpedance amplifier using Gm/ID based PSO applying design equations. AEU - International Journal of Electronics and Communications, 2021, 142, 153985.	1.7	4
4	High Dynamic Range Photocurrent Sensory Circuit with a Multi-Transistor Background Light Cancellation Loop for Photoplethysmography Sensing. Electronics (Switzerland), 2021, 10, 2769.	1.8	3
5	Design technique for regulated cascode transimpedance amplifier using Gm/ID methodology. Microelectronics Journal, 2020, 95, 104676.	1.1	13
6	CMOS Transimpedance Amplifiers for Biomedical Applications: A Comparative Study. IEEE Circuits and Systems Magazine, 2020, 20, 12-31.	2.6	25
7	A 32GHz 68dBΩ Low-Noise and Balance Operation Transimpedance Amplifier in 130nm SiGe BiCMOS for Optical Receivers. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2020, E103.A, 1408-1416.	0.2	0
8	A 61-nW Level-Crossing ADC With Adaptive Sampling for Biomedical Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66, 56-60.	2.2	42
9	Fully integrated wide dynamic range optical receiver for near infrared spectroscopy. Microelectronics Journal, 2019, 85, 92-97.	1.1	5
10	97 dB Dynamic Range CMOS Image Sensor Based on Diode Connected Load. , 2019, , .		0
11	Ultra-Low Power High Sensitivity Photoplethysmography Sensor Based on Inverted Cascode Transimpedance Amplifier Using Quasi-Floating Gate. , 2019, , .		3
12	14.85 ÂμW Analog Front-End for Photoplethysmography Acquisition with 142-dBâ,,¦ Gain and 64.2-pArms Noise. Sensors, 2019, 19, 512.	2.1	10
13	Introduction to the Special Issue on Wearable and Flexible Integrated Sensors for Screening, Diagnostics, and Treatment. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1300-1303.	2.7	3
14	A Fully Integrated High-Sensitivity Wide Dynamic Range PPG Sensor With an Integrated Photodiode and an Automatic Dimming Control LED Driver. IEEE Sensors Journal, 2018, 18, 652-659.	2.4	30
15	A 1-to-1-kHz, 4.2-to-544-nW, Multi-Level Comparator Based Level-Crossing ADC for IoT Applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 1390-1394.	2.2	21
16	A Low Power Programmable Gain Integrated Front-End for Electromyogram Signal Sensing. , 2018, , .		0
17	Towards a Continuous Non-Invasive Cuffless Blood Pressure Monitoring System Using PPG: Systems and Circuits Review. IEEE Circuits and Systems Magazine, 2018, 18, 6-26.	2.6	79
18	A 44Gbit/s Wide-Dynamic Range and High-Linearity Transimpedance Amplifier in 130nm BiCMOS Technology. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2018, E101.A, 438-440.	0.2	3

#	Article	IF	Citations
19	A low-power high-sensitivity analog front-end for PPG sensor. , 2017, 2017, 861-864.		1
20	Live demonstration: A ring-type blood pressure monitoring system based on photoplesthygraphy. , 2017, , .		2
21	An ultralow-power high-gain biopotential amplifier for electromyogram signal recording. , 2017, , .		Ο
22	Low-noise high input impedance 8-channels chopper-stabilized EEG acquisition system. , 2017, , .		2
23	Transimpedance Amplifiers. Springer Series in Advanced Microelectronics, 2016, , 105-161.	0.3	1
24	Basics of Photodiodes. Springer Series in Advanced Microelectronics, 2016, , 37-57.	0.3	0
25	PTT based continuous time non-invasive blood pressure system. , 2016, , .		13
26	10 Gb/s 1.95 mW active cascode transimpedance amplifier for high speed optical receivers. , 2016, , .		2
27	1.44 mW and 60 dB dynamic range optical receiver for near infrared spectroscopy. , 2016, , .		1
28	Hall sensor system design and modeling for current-measurement in power meters. , 2016, , .		1
29	Live demonstration: A support vector machine based hardware platform for blood pressure prediction. , 2016, , .		3
30	Optical Communications Fundamentals. Springer Series in Advanced Microelectronics, 2016, , 13-35.	0.3	0
31	Low-power transimpedance amplifier for near infrared spectroscopy. , 2016, , .		7
32	Transferring electromyogram signal between limbs. , 2016, , .		2
33	High-sensitivity regulated inverter cascode transimpedance amplifier for near infrared spectroscopy. , 2016, , .		7
34	Discrete Photodiodes. Springer Series in Advanced Microelectronics, 2016, , 59-65.	0.3	0
35	Post Amplifiers. Springer Series in Advanced Microelectronics, 2016, , 183-197.	0.3	0
36	Laser and Modulator Drivers. Springer Series in Advanced Microelectronics, 2016, , 199-216.	0.3	0

3

#	Article	IF	CITATIONS
37	A feature exploration methodology for learning based cuffless blood pressure measurement using photoplethysmography. , 2016, 2016, 6385-6388.		34
38	Integrated Photodiodes in Nanometer CMOS Technologies. Springer Series in Advanced Microelectronics, 2016, , 67-104.	0.3	0
39	Optoelectronic Circuits in Nanometer CMOS Technology. Springer Series in Advanced Microelectronics, 2016, , 217-240.	0.3	6
40	Optoelectronic Circuits in Nanometer CMOS Technology. Springer Series in Advanced Microelectronics, 2016, , .	0.3	11
41	Equalizers. Springer Series in Advanced Microelectronics, 2016, , 163-182.	0.3	0
42	Low power transimpedance amplifier using current reuse with dual feedback. , 2015, , .		2
43	Transimpedance amplifier with a compression stage for wide dynamic range optical applications. Microelectronics Journal, 2015, 46, 593-597.	1.1	9
44	D4. Implementation of optical distance measurement using correlation-based and time stretching technique on digital signal controller. , 2015, , .		0
45	D6. Regulated cascode transimpedance amplifier based on a cascode inverter local feedback. , 2015, , .		4
46	Current-reuse transimpedance amplifier with active inductor. , 2015, , .		8
47	8ÂGbits/s inductorless transimpedance amplifier in 90Ânm CMOS technology. Analog Integrated Circuits and Signal Processing, 2014, 79, 27-36.	0.9	10
48	High gain transimpedance amplifier with current mirror load. , 2014, , .		1
49	2.5 Gbit/s compact transimpedance amplifier using active inductor in 130nm CMOS technology. , 2014, , .		11
50	Integrated equalizer for high-speed short-distance optical communication link. , 2014, , .		0
51	Integrated Photodiodes in Nanometer CMOS Technologies. Electrical and Electronics Engineering an International Journal, 2014, 3, 141-160.	0.2	Ο
52	Optical Receiver Using Noise Cancelling With an Integrated Photodiode in 40 nm CMOS Technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 2013, 60, 1929-1936.	3.5	32
53	Optical Communication over Plastic Optical Fibers. Springer Series in Optical Sciences, 2013, , .	0.5	16
54	Low-power 10ÂGb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40Ânm CMOS. Analog Integrated Circuits and Signal Processing, 2013, 76, 367-376.	0.9	42

#	Article	IF	CITATIONS
55	10Gb/s inverter based cascode transimpedance amplifier in 40nm CMOS technology. , 2013, , .		16
56	High-speed photodiodes in 40nm standard CMOS technology. Sensors and Actuators A: Physical, 2013, 193, 213-219.	2.0	5
57	Avalanche Double Photodiode in 40-nm Standard CMOS Technology. IEEE Journal of Quantum Electronics, 2013, 49, 350-356.	1.0	33
58	250â€Mbit/s over 100â€m SI-POF with RCLED source using integrated post-equaliser. Electronics Letters, 2012, 48, 718.	0.5	2
59	10Gbit/s 2mW inductorless transimpedance amplifier. , 2012, , .		20
60	2.5Gbit/s transimpedance amplifier using noise cancelling for optical receivers. , 2012, , .		13
61	A gigabit fully integrated plastic optical fiber receiver for a RC-LED source. , 2012, , .		6
62	Real-Time 1.25-Gb/s Transmission Over 50-m SI-POF Using a Green Laser Diode. IEEE Photonics Technology Letters, 2012, 24, 1331-1333.	1.3	15
63	1.25 Gbit/s Over 50 m Step-Index Plastic Optical Fiber Using a Fully Integrated Optical Receiver With an Integrated Equalizer. Journal of Lightwave Technology, 2012, 30, 118-122.	2.7	48
64	1Gbit/s transmission over step-index plastic optical fiber using an optical receiver with an integrated equalizer. Optics Communications, 2011, 284, 5153-5156.	1.0	3
65	An integrated optical receiver for multilevel data communication over large core step index plastic optical fiber. Analog Integrated Circuits and Signal Processing, 2011, 67, 3-9.	0.9	8
66	170Mb/s multilevel transmission over 115m standard step-index plastic optical fiber using an integrated optical receiver. Optics Communications, 2011, 284, 191-194.	1.0	5
67	An optical receiver for eight-level data communication over step index plastic optical fiber. Optics Communications, 2010, 283, 2350-2352.	1.0	4
68	Giga-bit optical receiver for plastic optical fibre. Optics Communications, 2010, 283, 391-395.	1.0	4
69	Gigabit transmission over PMMA step-index plastic optical fiber using an optical receiver for multilevel communication. , 2010, , .		9
70	Optical receiver for multicarrier modulation in short-reach communication. Electronics Letters, 2010, 46, 225.	0.5	10
71	An integrated optical receiver for 2.5Cbit/s using 4-PAM signaling. , 2010, , .		5
72	An integrated optical receiver for multilevel data communication over plastic optical fiber. , 2009, , .		4

An integrated optical receiver for multilevel data communication over plastic optical fiber. , 2009, , . 72

#	Article	IF	CITATIONS
73	Optical receiver front-end for multilevel signalling. Electronics Letters, 2009, 45, 121.	0.5	6
74	Optical receiver with large-area photodiode for multilevel modulation. Optical and Quantum Electronics, 2009, 41, 131-135.	1.5	4
75	InAs/GaAs quantum dot structures covered by InGaAs strain reducing layer characterized by photomodulated reflectance. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 147, 175-178.	1.7	7
76	An Automatic Gain Control Front-End Optical Receiver for Multi-Level Data Transmission. , 2008, , .		4
77	A low-cost 110 dB CMOS IF/limiter amplifier with offset cancellation. , 2003, , .		1