
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3997132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature dependent kinetics for the reaction between OH radicals and (E)- and (Z)- CHFÂ=ÂCHCI: A dual-level computational study. Computational and Theoretical Chemistry, 2022, 1208, 113558.	1.1	1
2	Kinetic investigation of the reaction of ethylperoxy radicals with ethanol. International Journal of Chemical Kinetics, 2021, 53, 274-286.	1.0	1
3	Reaction kinetics of a series of alkenes with ClO and BrO radicals: A theoretical study. International Journal of Chemical Kinetics, 2021, 53, 250-264.	1.0	2
4	Reaction kinetics of a series of alkanes with ClO and BrO radicals: A theoretical study. International Journal of Chemical Kinetics, 2021, 53, 189-206.	1.0	3
5	Absorption cross-section measurements of ortho-xylyl radical in the 460.1–475.1Ânm region and investigation of its temperature and pressure dependence using cavity ringdown spectroscopy. Chemical Physics Letters, 2021, 765, 138314.	1.2	0
6	Temperature-dependent kinetic study of the photo-oxidation reaction of vinyl butyrate with Cl atoms and fate of the formation of alkoxy radicals. Chemical Physics Letters, 2021, 771, 138500.	1.2	2
7	Thermal Decomposition of 2-Methyltetrahydrofuran behind Reflected Shock Waves over the Temperature Range of 1179–1361 K. Journal of Physical Chemistry A, 2021, 125, 5406-5422.	1.1	2
8	Investigation of kinetics of phenyl radicals with ethyl formate in the gas phase using cavity ring-down spectroscopy and theoretical methodologies. Photochemical and Photobiological Sciences, 2021, 20, 859-873.	1.6	1
9	A Combined Experimental and Theoretical Study to Determine the Kinetics of 2-Ethoxy Ethanol with OH Radical in the Gas Phase. Journal of Physical Chemistry A, 2021, 125, 8869-8881.	1.1	4
10	Theoretical investigations on the OH radical mediated kinetics of cis- and trans-CH3CF=CHF and CH3CH=CF2 over temperature range of 200-400K. Journal of Fluorine Chemistry, 2021, 250, 109884.	0.9	1
11	Experimental and Computational Investigations of the Tropospheric Photooxidation Reactions of 1,1,1,3,3,3-Hexafluoro-2-Methyl-2-Propanol Initiated by OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2021, 125, 523-535.	1.1	4
12	Kinetics of IO radicals with ethyl formate and ethyl acetate: a study using cavity ring-down spectroscopy and theoretical methods. Physical Chemistry Chemical Physics, 2021, 23, 25974-25993.	1.3	2
13	Oxidative Degradation Kinetics and Mechanism of Two Biodiesel Constituents (Ethyl-2-Methyl) Tj ETQq1 1 0.7 Space Chemistry, 2020, 4, 142-156.	84314 rgBT 1.2	/Overlock 10 3
14	Temperature-Dependent Kinetics of the Reactions of Methyl-2-methyl Propionate and Methyl-2-methyl Butanoate with Cl Atoms under Tropospheric Conditions. ACS Earth and Space Chemistry, 2020, 4, 1448-1460.	1.2	1
15	Reaction of phenyl radicals towards propionaldehyde and butyraldehyde over the temperature range of 200–2000ÂK. Chemical Physics Letters, 2020, 758, 137915.	1.2	1
16	Kinetic Studies on the Photo-oxidation Reactions of Methyl-2-methyl Butanoate and Methyl-3-methyl Butanoate with OH Radicals. Journal of Physical Chemistry A, 2020, 124, 10923-10936.	1.1	1
17	Tropospheric Photo-oxidation of Ethyl Methacrylate Initiated by Cl Atoms in the Gas Phase: Kinetic and Mechanistic Investigations. ACS Earth and Space Chemistry, 2020, 4, 831-842.	1.2	1
18	Kinetic Investigations of the Reaction of Phenyl Radicals with Ethyl Acetate in the Gas Phase: An Experimental and Computational Study. Journal of Physical Chemistry A, 2020, 124, 5503-5512.	1.1	7

#	Article	IF	CITATIONS
19	Kinetic and Mechanistic Investigation for the Gas-Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Acrylate with OH Radicals and Cl Atoms. Journal of Physical Chemistry A, 2020, 124, 2335-2351.	1.1	1
20	Cl-Initiated Photo-oxidation Studies of Methyl Valerate and Methyl Isovalerate under Tropospherically Relevant Conditions. Journal of Physical Chemistry A, 2020, 124, 2515-2529.	1.1	0
21	Dissociative nature of C(sp ²)–N(sp ³) bonds of carbazole based materials <i>via</i> conical intersection: simple method to predict the exciton stability of host materials for blue OLEDs: a computational study. Physical Chemistry Chemical Physics, 2020, 22, 7995-8005.	1.3	4
22	Photooxidation Reactions of Ethyl 2-Methylpropionate (E2MP) and Ethyl 2,2-Dimethylpropionate (E22DMP) Initiated by OH Radicals: An Experimental and Computational Study. Journal of Physical Chemistry A, 2020, 124, 2768-2784.	1.1	1
23	Cl Atom-Initiated Photo-Oxidation Reactions of Vinyl Trifluoroacetate and Allyl Trifluoroacetate in Tropospheric Conditions. Journal of Physical Chemistry A, 2020, 124, 2123-2139.	1.1	0
24	Reaction kinetics of CH2OO with 1,3-butadiene: Mechanistic investigation with RRKM calculations. Chemical Physics Letters, 2020, 742, 137157.	1.2	1
25	Tropospheric chemistry of ethyl tiglate initiated by Cl atoms. Chemical Physics Letters, 2020, 748, 137371.	1.2	0
26	Cl-Atom-Initiated Atmospheric Degradation of Saturated Cyclic Hydrocarbons: Kinetic and Mechanistic Investigation. Journal of Physical Chemistry A, 2019, 123, 7361-7373.	1.1	3
27	Cl atom initiated tropospheric chemistry of ethyl butyrate. Chemical Physics Letters, 2019, 731, 136594.	1.2	1
28	Investigation of the Absorption Cross Section of Phenyl Radical and Its Kinetics with Methanol in the Gas Phase Using Cavity Ring-Down Spectroscopy and Theoretical Methodologies. Journal of Physical Chemistry A, 2019, 123, 9682-9692.	1.1	11
29	Gas Phase Kinetics and Mechanistic Insights for the Reactions of Cl atoms with Isopropyl Formate and Isobutyl Formate. Journal of Physical Chemistry A, 2019, 123, 9978-9994.	1.1	2
30	Excited state C–N bond dissociation and cyclization of tri-aryl amine-based OLED materials: a theoretical investigation. Physical Chemistry Chemical Physics, 2019, 21, 438-447.	1.3	15
31	A theoretical insight on the kinetics for the reaction of (E)-/(Z)-CHF=CF(CF2)x=1,2CF3 with OH radicals under tropospheric conditions. Journal of Fluorine Chemistry, 2019, 222-223, 31-45.	0.9	6
32	A Dual Level Direct Dynamics Study for the Reaction of CF ₂ =CHCF ₃ (HFCâ€ <i>1225 zc</i>) and CF ₂ =CHCF ₂ CF ₃ (HFCâ€ <i>1327 c: OH Radicals. ChemistrySelect, 2019, 4, 4827-4838.</i>	z <b D) tow	arda
33	Photo-Oxidation Reaction Kinetics and Mechanistics of 4-Hydroxy-2-butanone with Cl Atoms and OH Radicals in the Gas Phase. Journal of Physical Chemistry A, 2019, 123, 4342-4353.	1.1	7
34	Kinetics and Mechanistic Study for Gas Phase Tropospheric Photo-oxidation Reactions of 2,2,2-Trifluoroethyl Methacrylate with OH Radicals and Cl Atoms: An Experimental and Computational Approach. Journal of Physical Chemistry A, 2019, 123, 10868-10884.	1.1	2
35	Cl Atoms and OH Radicals Initiated Kinetic and Mechanistic Study on the Degradation of Propyl Butanoate under Tropospheric Conditions. Journal of Physical Chemistry A, 2019, 123, 10976-10989.	1.1	5
36	Cl Atom Initiated Photo-oxidation of Mono-chlorinated Propanes To Form Carbonyl Compounds: A Kinetic and Mechanistic Approach. Journal of Physical Chemistry A, 2019, 123, 723-741.	1.1	18

#	Article	IF	CITATIONS
37	Kinetic Investigations on the Gas Phase Reaction of 2,2,2â€Trifluoroethylbutyrate with OH Radicals: An Experimental and Theoretical Study. ChemistrySelect, 2018, 3, 4480-4489.	0.7	2
38	Theoretical investigations on the kinetics of Cl atom initiated reactions of series of 1-alkenes. Environmental Science and Pollution Research, 2018, 25, 4387-4405.	2.7	4
39	Temperature-Dependent Kinetics of the Reaction of a Criegee Intermediate with Propionaldehyde: A Computational Investigation. Journal of Physical Chemistry A, 2018, 122, 8433-8445.	1.1	14
40	Photo Oxidation Reaction Kinetics of Ethyl Propionate with Cl Atom and Formation of Propionic Acid. Journal of Physical Chemistry A, 2018, 122, 8274-8285.	1.1	14
41	Cl-initiated photo-oxidation reactions of methyl propionate in atmospheric condition. Environmental Science and Pollution Research, 2018, 25, 20999-21010.	2.7	13
42	Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study. Journal of Physical Chemistry A, 2018, 122, 6134-6146.	1.1	5
43	Experimental and Theoretical Investigations on the Reaction of 1,3-Butadiene with Cl Atom in the Gas Phase. Journal of Physical Chemistry A, 2017, 121, 1976-1984.	1.1	7
44	Addition and abstraction kinetics of H atom with propylene and isobutylene between 200 and 2500 K: A DFT study. Chemical Physics, 2017, 491, 82-94.	0.9	1
45	Experimental and computational kinetic investigations for the reactions of Cl atoms with unsaturated ketones in the gas phase. New Journal of Chemistry, 2017, 41, 14299-14314.	1.4	3
46	Shock tube study and RRKM calculations on thermal decomposition of 2-chloroethyl methyl ether. Combustion and Flame, 2017, 186, 263-276.	2.8	3
47	Kinetic investigations of Cl atom initiated photo-oxidation reactions of cyclic unsaturated hydrocarbons in the gas phase: an experimental and theoretical study. New Journal of Chemistry, 2017, 41, 7491-7505.	1.4	14
48	An Exprimental and Computational Study on the Cl Atom Initiated Photo-Oxidization Reactions of Butenes in the Gas Phase. Journal of Physical Chemistry A, 2017, 121, 5487-5499.	1.1	7
49	Experimental and RRKM Investigations on the Degradation of Ethyl Formate. ChemistrySelect, 2017, 2, 11603-11614.	0.7	2
50	Thermal Decomposition of 2-Pentanol: A Shock Tube Study and RRKM Calculations. Journal of Physical Chemistry A, 2016, 120, 8024-8036.	1.1	5
51	Kinetic investigations of chlorine atom initiated photo oxidation reactions of 2,3-dimethyl-1,3-butadiene in the gas phase: an experimental and theoretical study. RSC Advances, 2016, 6, 67739-67750.	1.7	11
52	Kinetics of the thermal decomposition of tetramethylsilane behind the reflected shock waves between 1058 and 1194 K. Journal of Chemical Sciences, 2016, 128, 573-588.	0.7	6
53	Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach. Organic Electronics, 2016, 36, 177-184.	1.4	24
54	ls H Atom Abstraction Important in the Reaction of Cl with 1-Alkenes?. Journal of Physical Chemistry A, 2016, 120, 4096-4107.	1.1	7

4

#	Article	IF	CITATIONS
55	Rate coefficients for hydrogen abstraction reaction of pinonaldehyde (C10H16O2) with Cl atoms between 200 and 400 K: A DFT study. Journal of Chemical Sciences, 2016, 128, 977-989.	0.7	1
56	Theoretical investigations of the gas phase reaction of limonene (C ₁₀ H ₁₆) with OH radical. Molecular Physics, 2015, 113, 3202-3215.	0.8	17
57	Experimental and Computational Investigation on the Gas Phase Reaction of <i>p</i> -Cymene with Cl Atoms. Journal of Physical Chemistry A, 2015, 119, 559-570.	1.1	9
58	Abstraction and addition kinetics of C ₂ H radicals with CH ₄ , C ₂ H ₆ , C ₃ H ₈ , C ₂ H ₄ , and C ₃ H ₆ : CVT/SCT/ISPE and hybrid meta-DFT methods. Physical Chemistry Chemical Physics, 2015, 17, 3142-3156.	1.3	22
59	Experimental and theoretical study on thermal decomposition of methyl butanoate behind reflected shock waves. RSC Advances, 2015, 5, 86536-86550.	1.7	9
60	Kinetic parameters for the reaction of OH radical with cis-CHFCHCHF2, trans-CHFCHCHF2, CF2CHCHF2 and CF2CCHF: Hybrid meta DFT and CVT/SCT/ISPE calculations. Journal of Fluorine Chemistry, 2015, 178, 266-278.	0.9	5
61	Gas Phase Kinetics of 2,2,2-Trifluoroethylbutyrate with the Cl Atom: An Experimental and Theoretical Study. Journal of Physical Chemistry A, 2015, 119, 9294-9306.	1.1	13
62	Rate coefficients for the gas-phase reaction of OH radical with <i>α</i> -pinene: an experimental and computational study. Molecular Physics, 2014, 112, 1495-1511.	0.8	14
63	Mechanism, kinetics and atmospheric fate of CF3CHCH2, CF3CFCH2, and CF3CFCF2 by its reaction with OH-radicals: CVT/SCT/ISPE and hybrid meta-DFT methods. Journal of Molecular Graphics and Modelling, 2014, 48, 60-69.	1.3	28
64	Theoretical investigations on the kinetics of p-cymene+OH reaction. Chemical Physics Letters, 2014, 597, 75-85.	1.2	12
65	Experimental and Computational Investigation on the Gas Phase Reaction of Ethyl Formate with Cl Atoms. Journal of Physical Chemistry A, 2014, 118, 5272-5278.	1.1	23
66	Thermal decomposition of 1-chloropropane behind the reflected shock waves in the temperature range of 1015–1220 K: Single pulse shock tube and computational studies. Journal of Chemical Sciences, 2014, 126, 897-909.	0.7	7
67	Reaction kinetics of Cl atoms with limonene: An experimental and theoretical study. Atmospheric Environment, 2014, 99, 183-195.	1.9	15
68	Experimental and theoretical rate coefficients for the gas phase reaction of β-Pinene with OH radical. Atmospheric Environment, 2013, 79, 161-171.	1.9	27
69	Theoretical Investigations on the Kinetics of H-Abstraction Reactions from CF ₃ CH(OH)CF ₃ by OH Radicals. Journal of Physical Chemistry A, 2013, 117, 4534-4544.	1.1	31
70	Abstraction Kinetics of H-Atom by OH Radical from Pinonaldehyde (C10H16O2): Ab Initio and Transition-State Theory Calculations. Journal of Physical Chemistry A, 2012, 116, 5856-5866.	1.1	16
71	Rate Coefficients and Reaction Mechanism for the Reaction of OH Radicals with (<i>E</i>)-CF ₃ CHâ•CHF, (<i>Z</i>)-CF ₃ CHâ•CHF, (<i>Z</i>)-CF ₃ CFâ•CHF, and (<i>Z</i>)-CF ₃ CFâ•CHF between 200 and 400 K: Hybrid Density Functional Theory and Canonical Variational Transition State Theory Calculations. Journal of Physical Chemistry A, 2012, 116,	1.1	26
72	9032 9042. Kinetic parameters for the reaction of hydroxyl radical with CH ₃ OCH ₂ F (HFEâ€161) in the temperature range of 200–400 K: Transition state theory and Ab initio calculations. International Journal of Quantum Chemistry, 2012, 112, 1066-1077.	1.0	12

#	Article	IF	CITATIONS
73	Kinetic parameters of abstraction reactions of OH radical with ethylene, fluoroethylene, cis- and trans-1,2-difluoroethylene and 1,1-difluoroethylene, in the temperature range of 200–400K: Gaussian-3/B3LYP theory. Chemical Physics Letters, 2011, 511, 440-446.	1.2	11
74	Computational study on OH radical reaction with CHF ₂ CHFCHF ₂ (HFCâ€245ea) between 200 and 400 K. International Journal of Chemical Kinetics, 2011, 43, 418-430.	1.0	15
75	Thermodynamic and kinetic studies of hydroxyl radical reaction with bromine oxide using density functional theory. Computational and Theoretical Chemistry, 2011, 964, 283-290.	1.1	3
76	Rate coefficients for the reaction of OH with CF ₃ CH ₂ CH ₃ (HFCâ€263fb) between 200 and 400 K: <i>Ab initio</i> , DFT, and transition state theory calculations. Journal of Computational Chemistry, 2010, 31, 500-509.	1.5	9
77	Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy. Chemical Physics Letters, 2010, 484, 160-164.	1.2	3
78	Rate coefficients for the reactions of OH with <i>n</i> â€propanol and <i>iso</i> â€propanol between 237 and 376 K. International Journal of Chemical Kinetics, 2010, 42, 10-24.	1.0	15
79	Kinetics of OH radical reaction with CF3CHFCH2F (HFC-245eb) between 200 and 400K: G3MP2, G3B3 and transition state theory calculations. Computational and Theoretical Chemistry, 2010, 949, 73-81.	1.5	11
80	Rate coefficients for the reaction of the acetyl radical, CH ₃ CO, with Cl ₂ between 253 and 384 K. International Journal of Chemical Kinetics, 2009, 41, 543-553.	1.0	8
81	The CH3CO quantum yield in the 248nm photolysis of acetone, methyl ethyl ketone, and biacetyl. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199, 336-344.	2.0	36
82	Visible Absorption Spectrum of the CH ₃ CO Radical. Journal of Physical Chemistry A, 2007, 111, 8950-8958.	1.1	21
83	The relaxation of OH (v = 1) and OD (v = 1) by H2O and D2O at temperatures from 251 to 390 K. Physical Chemistry Chemical Physics, 2006, 8, 4563.	1.3	18
84	Rate Coefficients for the Reactions of OH with CF3CH2CH3(HFC-263fb), CF3CHFCH2F (HFC-245eb), and CHF2CHFCHF2(HFC-245ea) between 238 and 375 Kâ€. Journal of Physical Chemistry A, 2006, 110, 6724-6731.	1.1	22
85	Rate coefficients for the relaxation of OH (v=1) by O2 at temperatures from 204–371K and by N2O from 243–372K. Chemical Physics Letters, 2006, 421, 111-117.	1.2	17
86	Rate coefficients for the OH + CFH2CH2OH reaction between 238 and 355 K. Physical Chemistry Chemical Physics, 2005, 7, 2498.	1.3	21
87	Thermal decomposition of haloethanols: single pulse shock tube and ab initio studies. , 2005, , 621-626.		2
88	Thermal Decomposition of 2-Fluoroethanol:  Single Pulse Shock Tube and ab Initio Studies. Journal of Physical Chemistry A, 2003, 107, 9782-9793.	1.1	18
89	Ab initio, DFT and transition state theory calculations on 1,2-HF, HCI and CIF elimination reactions from CH2F–CH2CI. Physical Chemistry Chemical Physics, 2003, 5, 3897-3904.	1.3	34
90	Unimolecular HCl Elimination from 1,2-Dichloroethane:  A Single Pulse Shock Tube and ab Initio Study. Journal of Physical Chemistry A, 2002, 106, 8366-8373.	1.1	24

#	Article	IF	CITATIONS
91	Kinetics for the photo-chemical degradation of Methyl butyrate in presence of Cl atoms and OH radicals. Journal of Atmospheric Chemistry, 0, , 1.	1.4	1