
Guo-Qing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3996505/publications.pdf

Version: 2024-02-01

GUO-OING HUANG

#	Article	IF	CITATIONS
1	Complex coacervation of soybean protein isolate and chitosan. Food Chemistry, 2012, 135, 534-539.	4.2	241
2	Comparative study on the Maillard reaction of chitosan oligosaccharide and glucose with soybean protein isolate. International Journal of Biological Macromolecules, 2019, 131, 601-607.	3.6	87
3	Degradation of aflatoxin B1 by low-temperature radio frequency plasma and degradation product elucidation. European Food Research and Technology, 2015, 241, 103-113.	1.6	63
4	Morphological study on apoptosis Hela cells induced by soyasaponins. Toxicology in Vitro, 2007, 21, 820-826.	1.1	49
5	Complex coacervation of carboxymethyl konjac glucomannan and chitosan and coacervate characterization. International Journal of Biological Macromolecules, 2019, 123, 436-445.	3.6	48
6	Effect of high coacervation temperature on the physicochemical properties of resultant microcapsules through induction of Maillard reaction between soybean protein isolate and chitosan. Journal of Food Engineering, 2018, 234, 91-97.	2.7	43
7	Conjugation of soybean protein isolate with xylose/fructose through wet-heating Maillard reaction. Journal of Food Measurement and Characterization, 2018, 12, 2718-2724.	1.6	40
8	Characterization of carboxymethylated konjac glucomannan for potential application in colon-targeted delivery. Food Hydrocolloids, 2019, 94, 354-362.	5.6	39
9	Soyasaponins inhibit the proliferation of Hela cells by inducing apoptosis. Experimental and Toxicologic Pathology, 2007, 59, 35-42.	2.1	38
10	Maillard reaction in protein – polysaccharide coacervated microcapsules and its effects on microcapsule properties. International Journal of Biological Macromolecules, 2020, 155, 1194-1201.	3.6	33
11	Pickering emulsions stabilized by ovalbumin-sodium alginate coacervates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595, 124712.	2.3	33
12	Microencapsulation of capsanthin by soybean protein isolate hitosan coacervation and microcapsule stability evaluation. Journal of Applied Polymer Science, 2014, 131, .	1.3	28
13	Genipin-crosslinked O-carboxymethyl chitosan–gum Arabic coacervate as a pH-sensitive delivery system and microstructure characterization. Journal of Biomaterials Applications, 2016, 31, 193-204.	1.2	23
14	Effect of coacervation conditions on the viscoelastic properties of N,O-carboxymethyl chitosan – gum Arabic coacervates. Food Chemistry, 2017, 228, 236-242.	4.2	21
15	Intestine-targeted delivery potency of the O-carboxymethyl chitosan–gum Arabic coacervate: Effects of coacervation acidity and possible mechanism. Materials Science and Engineering C, 2017, 79, 423-429.	3.8	21
16	Complex Coacervation of O-Carboxymethylated Chitosan and Gum Arabic. International Journal of Polymeric Materials and Polymeric Biomaterials, 2015, 64, 198-204.	1.8	20
17	Intestine-targeted delivery potency of O-carboxymethyl chitosan–coated layer-by-layer microcapsules: An in vitro and in vivo evaluation. Materials Science and Engineering C, 2019, 105, 110129.	3.8	19
18	Whey protein isolate—low methoxyl pectin coacervates as a high internal phase Pickering emulsion stabilizer. Journal of Dispersion Science and Technology, 2021, 42, 1009-1020.	1.3	18

GUO-QING HUANG

#	Article	IF	CITATIONS
19	Preparation and characterization of O-carboxymethyl chitosan–sodium alginate polyelectrolyte complexes. Colloid and Polymer Science, 2015, 293, 401-407.	1.0	17
20	Carboxymethyl konjac glucomannan coating on multilayered emulsions for improved bioavailability and targeted delivery of curcumin. Food and Function, 2021, 12, 5429-5439.	2.1	17
21	Preparation of powdered oil by spray drying the Pickering emulsion stabilized by ovalbumin – Gum Arabic polyelectrolyte complex. Food Chemistry, 2022, 391, 133223.	4.2	16
22	Soy-derived Isoflavones Inhibit HeLa Cell Growth by Inducing Apoptosis. Plant Foods for Human Nutrition, 2011, 66, 122-128.	1.4	14
23	Characterization of O-Carboxymethyl Chitosan – Gum Arabic Coacervates as a Function of Degree of Substitution. Journal of Dispersion Science and Technology, 2016, 37, 1368-1374.	1.3	13
24	pH-Dependent intestine-targeted delivery potency of the O-carboxymethyl chitosan – gum Arabic coacervates. International Journal of Biological Macromolecules, 2018, 117, 315-322.	3.6	13
25	Effects of coacervation acidity on the genipin crosslinking action and intestine-targeted delivery potency of the O-carboxymethyl chitosan–gum arabic coacervates. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 89-96.	1.8	11
26	Complexation between ovalbumin and gum Arabic in high total biopolymer concentrations and the emulsifying ability of the complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128624.	2.3	11
27	Microencapsulation of an Angiotensin I-Converting Enzyme Inhibitory Peptide VLPVP by Membrane Emulsification. Food and Bioprocess Technology, 2017, 10, 2005-2012.	2.6	9
28	Modification of Konjac Glucomannan by Reduced-Pressure Radio-Frequency Air Plasma. International Journal of Food Engineering, 2017, 13, .	0.7	8
29	Recovery of lysozyme from aqueous solution by polyelectrolyte precipitation with sodium alginate. Food Hydrocolloids, 2019, 90, 225-231.	5.6	6
30	Complex coacervation of carboxymethyl konjac glucomannan and ovalbumin and coacervate characterization. Journal of Dispersion Science and Technology, 2022, 43, 1991-2001.	1.3	6
31	Fabrication of lipase-loaded particles by coacervation with chitosan. Food Chemistry, 2022, 385, 132689.	4.2	6
32	Glutaraldehyde-crosslinked O-carboxymethyl chitosan–gum Arabic coacervates: Characteristics versus complexation acidity. Journal of Dispersion Science and Technology, 2017, 38, 1607-1612.	1.3	5
33	Interaction between ovalbumin and pectin and coacervate characterization. Colloid and Polymer Science, 2021, 299, 943-953.	1.0	5
34	Selenium-Enriched Fatty Goose Liver Attenuates Alcohol-Induced Liver Injury in Mice by Enhancing Antioxidant Capability. Journal of Poultry Science, 2013, 50, 177-184.	0.7	2
35	Release of Leuâ€Proâ€Pro from corn gluten meal by fermentation with a Lactobacillus helveticus strain. Journal of the Science of Food and Agriculture, 2021, , .	1.7	0