Franciele M Pelissari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3996367/publications.pdf

Version: 2024-02-01

35 papers 2,265 citations

430754 18 h-index 28 g-index

37 all docs

37 docs citations

37 times ranked

2833 citing authors

#	Article	IF	Citations
1	Antimicrobial, Mechanical, and Barrier Properties of Cassava Starchâ^'Chitosan Films Incorporated with Oregano Essential Oil. Journal of Agricultural and Food Chemistry, 2009, 57, 7499-7504.	2.4	403
2	Isolation and characterization of cellulose nanofibers from banana peels. Cellulose, 2014, 21, 417-432.	2.4	231
3	Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT - Food Science and Technology, 2014, 59, 1311-1318.	2.5	225
4	Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloids, 2013, 30, 681-690.	5.6	197
5	Cellulose nanofibers produced from banana peel by chemical and mechanical treatments: Characterization and cytotoxicity assessment. Food Hydrocolloids, 2018, 75, 192-201.	5.6	138
6	Nanocomposites based on banana starch reinforced with cellulose nanofibers isolated from banana peels. Journal of Colloid and Interface Science, 2017, 505, 154-167.	5.0	135
7	Isolation and characterization of the flour and starch of plantain bananas (<i>Musa paradisiaca</i>). Starch/Staerke, 2012, 64, 382-391.	1.1	133
8	Current status of biotechnological production and applications of microbial exopolysaccharides. Critical Reviews in Food Science and Nutrition, 2020, 60, 1475-1495.	5.4	110
9	Constrained mixture design applied to the development of cassava starch–chitosan blown films. Journal of Food Engineering, 2012, 108, 262-267.	2.7	87
10	Cellulose nanofibers produced from banana peel by enzymatic treatment: Study of process conditions. Industrial Crops and Products, 2017, 95, 664-674.	2.5	87
11	Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 2019, 207, 169-179.	5.1	84
12	Extrusion parameters related to starch/chitosan active films properties. International Journal of Food Science and Technology, 2011, 46, 702-710.	1.3	71
13	Achira as a source of biodegradable materials: Isolation and characterization of nanofibers. Carbohydrate Polymers, 2015, 123, 406-415.	5.1	50
14	Biodegradable trays based on cassava starch blended with agroindustrial residues. Composites Part B: Engineering, 2020, 183, 107682.	5.9	47
15	Optimization of process conditions for the production of films based on the flour from plantain bananas (Musa paradisiaca). LWT - Food Science and Technology, 2013, 52, 1-11.	2.5	46
16	Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. International Journal of Biological Macromolecules, 2020, 161, 132-146.	3.6	34
17	Starch-Based Edible Films and Coatings. , 2019, , 359-420.		33
18	Effect of process conditions on the production of nanocomposite films based on amaranth flour and montmorillonite. LWT - Food Science and Technology, 2015, 61, 70-79.	2.5	27

#	Article	IF	Citations
19	Immobilization of Bacillus firmus strain 37 in inorganic matrix for cyclodextrin production. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 1-7.	1.8	25
20	Effect of Edible Coating from Cassava Starch and Babassu Flour (Orbignya phalerata) on Brazilian Cerrado Fruits Quality. Food and Bioprocess Technology, 2020, 13, 172-179.	2.6	21
21	Green Silver Nanoparticles: Recent Trends and Technological Developments. Journal of Polymers and the Environment, 2021, 29, 2711-2737.	2.4	20
22	Biodegradable and Edible Film Based on Persimmon (Diospyros kaki L.) Used as a Lid for Minimally Processed Vegetables Packaging. Food and Bioprocess Technology, 2021, 14, 765-779.	2.6	13
23	Chitosan nanocomposites for food packaging applications. , 2020, , 393-435.		8
24	Efeito do tempo e da temperatura de estocagem nas determinações de acidez, cálcio, proteÃnas e lipÃdeos de leite de doadoras de bancos de leite humano. Revista Brasileira De Saude Materno Infantil, 2008, 8, 257-263.	0.2	7
25	Shelf life of cashew nut kernels packed in banana starchâ€based nanocomposites. International Journal of Food Science and Technology, 2021, 56, 3682-3690.	1.3	7
26	Antioxidant packaging development and optimization using agroindustrial wastes. Journal of Applied Polymer Science, 2021, 138, 50887.	1.3	6
27	Special emphasis on the therapeutic potential of microparticles with antidiabetic effect: Trends and possible applications. Trends in Food Science and Technology, 2021, 111, 442-462.	7.8	5
28	Antibacterial films made with persimmon (<i>Diospyros kaki</i> L.), pectin, and glycerol: An experimental design approach. Journal of Food Science, 2021, 86, 4539-4553.	1.5	5
29	Potential of nanoparticles as drug delivery system for cancer treatment., 2018,, 431-468.		4
30	Perfil do consumo de leite e produtos derivados na cidade de Maring \tilde{A}_i , Estado do Paran \tilde{A}_i . Acta Scientiarum - Technology, 2010, 32, .	0.4	2
31	Nanotechnology Applied for Cellulase Improvements. Biofuel and Biorefinery Technologies, 2018, , 93-114.	0.1	1
32	Targeting infections and inflammation through micro and nano-nutraceuticals. Food Bioscience, 2022, 49, 101891.	2.0	1
33	Chapter 5 Active Bio-Packaging. , 2016, , 63-82.		0
34	Effect of Casting Process Conditions on Mechanical Properties and Water Solubility of Films Made from Wolf Fruit and Its Optimization. Journal of Polymers and the Environment, 2021, 29, 2435.	2.4	0
35	Antifungal performance of essential oils in breadmaking by in situ, in vitro and active packaging evaluation – a review. Research, Society and Development, 2022, 11, e1011628547.	0.0	0