Marta Lionetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3996359/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biological and Clinical Relevance of miRNA Expression Signatures in Primary Plasma Cell Leukemia. Clinical Cancer Research, 2013, 19, 3130-3142.	7.0	86
2	Molecular spectrum of <i>BRAF, NRAS</i> and <i>KRAS</i> gene mutations in plasma cell dyscrasias: implication for MEK-ERK pathway activation. Oncotarget, 2015, 6, 24205-24217.	1.8	65
3	Integrative highâ€resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes Chromosomes and Cancer, 2009, 48, 521-531.	2.8	60
4	Genomeâ€wide analysis of primary plasma cell leukemia identifies recurrent imbalances associated with changes in transcriptional profiles. American Journal of Hematology, 2013, 88, 16-23.	4.1	60
5	Whole-exome sequencing of primary plasma cell leukemia discloses heterogeneous mutational patterns. Oncotarget, 2015, 6, 17543-17558.	1.8	55
6	Transcriptional Characterization of a Prospective Series of Primary Plasma Cell Leukemia Revealed Signatures Associated with Tumor Progression and Poorer Outcome. Clinical Cancer Research, 2013, 19, 3247-3258.	7.0	50
7	Long non-coding RNAs in normal and malignant hematopoiesis. Oncotarget, 2016, 7, 50666-50681.	1.8	50
8	MicroRNAs in the Pathobiology of Multiple Myeloma. Current Cancer Drug Targets, 2012, 12, 823-837.	1.6	44
9	A compendium of <i>DIS3</i> mutations and associated transcriptional signatures in plasma cell dyscrasias. Oncotarget, 2015, 6, 26129-26141.	1.8	40
10	Molecular spectrum of <i>TP53</i> mutations in plasma cell dyscrasias by next generation sequencing: an Italian cohort study and overview of the literature. Oncotarget, 2016, 7, 21353-21361.	1.8	40
11	Compendium of <i><scp>FAM</scp>46C</i> gene mutations in plasma cell dyscrasias. British Journal of Haematology, 2016, 174, 642-645.	2.5	34
12	Circulating tumor DNA as a liquid biopsy in plasma cell dyscrasias. Haematologica, 2018, 103, e245-e248.	3.5	29
13	Utilizing next-generation sequencing in the management of multiple myeloma. Expert Review of Molecular Diagnostics, 2017, 17, 653-663.	3.1	28
14	Molecular Classification and Pharmacogenetics of Primary Plasma Cell Leukemia: An Initial Approach toward Precision Medicine. International Journal of Molecular Sciences, 2015, 16, 17514-17534.	4.1	23
15	Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2015, 56, 3150-3158.	1.3	23
16	Primary plasma cell leukemia 2.0: advances in biology and clinical management. Expert Review of Hematology, 2016, 9, 1063-1073.	2.2	15
17	Limits and Applications of Genomic Analysis of Circulating Tumor DNA as a Liquid Biopsy in Asymptomatic Forms of Multiple Myeloma. HemaSphere, 2020, 4, e402.	2.7	15
18	Insulin Growth Factor 1 Receptor Expression Is Associated with NOTCH1 Mutation, Trisomy 12 and Aggressive Clinical Course in Chronic Lymphocytic Leukaemia. PLoS ONE, 2015, 10, e0118801.	2.5	15

Marta Lionetti

#	Article	IF	CITATIONS
19	Global methylation patterns in primary plasma cell leukemia. Leukemia Research, 2018, 73, 95-102.	0.8	13
20	Time to first treatment and P53 dysfunction in chronic lymphocytic leukaemia: results of the O-CLL1 study in early stage patients. Scientific Reports, 2020, 10, 18427.	3.3	13
21	Functional Impact of Genomic Complexity on the Transcriptome of Multiple Myeloma. Clinical Cancer Research, 2021, 27, 6479-6490.	7.0	9
22	Transcriptomic Analysis in Multiple Myeloma and Primary Plasma Cell Leukemia with t(11;14) Reveals Different Expression Patterns with Biological Implications in Venetoclax Sensitivity. Cancers, 2021, 13, 4898.	3.7	8
23	Prospective validation of predictive value of abdominal computed tomography scan on time to first treatment in Rai 0 chronic lymphocytic leukemia patients: results of the multicenter Oâ€< scp>CLL1â€< scp>GISL study. European Journal of Haematology, 2016, 96, 36-45.	2.2	7
24	Application of Next-Generation Sequencing for the Genomic Characterization of Patients with Smoldering Myeloma. Cancers, 2020, 12, 1332.	3.7	7
25	Clinical, Morphological and Clonal Progression of VEXAS Syndrome in the Context of Myelodysplasia Treated with Azacytidine. Clinical Hematology International, 2022, 4, 52-55.	1.7	7
26	Frequency and clinical relevance of coding and noncoding <i>NOTCH1</i> mutations in early stage Binet A chronic lymphocytic leukemia patients. Hematological Oncology, 2020, 38, 406-408.	1.7	5
27	MGUS and clonal hematopoiesis show unrelated clinical and biological trajectories in an older population cohort. Blood Advances, 2022, 6, 5702-5706.	5.2	3
28	Genomics of Smoldering Multiple Myeloma: Time for Clinical Translation of Findings?. Cancers, 2021, 13, 3319.	3.7	2
29	Biological and Clinical Relevance of Surrogate Markers of IgVH Mutational Status in B-Cell Chronic Lymphocytic Leukemia Blood, 2008, 112, 1062-1062.	1.4	0
30	Immune Thrombocytopenia in Patients with Chronic Lymphocytic Leukemia Is Associated with Stereotyped B-Cell Receptors. Blood, 2011, 118, 2847-2847.	1.4	0
31	B-Cell Receptor Configuration and Adverse Cytogenetics Are Associated with Autoimmune Hemolytic Anemia in Chronic Lymphocytic Leukemia. Blood, 2012, 120, 1780-1780.	1.4	0
32	The Expression Pattern of Small Nucleolar and Small Cajal Body-Specific RNAs Characterizes Distinct Molecular Subtypes of Multiple Myeloma. Blood, 2012, 120, 3955-3955.	1.4	0
33	Revealing Transcriptome Deregulation upon Genomic Complexity in Multiple Myeloma. Blood, 2020, 136, 3-4.	1.4	0
34	The Dynamics of Nucleotide Variants in the Progression from Low–Intermediate Myeloma Precursor Conditions to Multiple Myeloma: Studying Serial Samples with a Targeted Sequencing Approach. Cancers, 2022, 14, 1035.	3.7	0