List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3995518/publications.pdf Version: 2024-02-01

Ιλιλι Τλνιέερλ

#	Article	IF	CITATIONS
1	Let7b-5p is Upregulated in the Serum of Emirati Patients with Type 2 Diabetes and Regulates Insulin Secretion in INS-1 Cells. Experimental and Clinical Endocrinology and Diabetes, 2022, 130, 22-29.	1.2	7
2	Carnosic Acid Protects INS-1 β-Cells against Streptozotocin-Induced Damage by Inhibiting Apoptosis and Improving Insulin Secretion and Glucose Uptake. Molecules, 2022, 27, 2102.	3.8	7
3	Metformin enhances LDL-cholesterol uptake by suppressing the expression of the pro-protein convertase subtilisin/kexin type 9 (PCSK9) in liver cells. Endocrine, 2022, 76, 543-557.	2.3	6
4	EXOC6 (Exocyst Complex Component 6) Is Associated with the Risk of Type 2 Diabetes and Pancreatic β-Cell Dysfunction. Biology, 2022, 11, 388.	2.8	2
5	The Role of Estrogen Signaling in Cellular Iron Metabolism in Pancreatic Î ² Cells. Pancreas, 2022, 51, 121-127.	1.1	1
6	Identifying Immunological and Clinical Predictors of COVID-19 Severity and Sequelae by Mathematical Modeling. Frontiers in Immunology, 2022, 13, 865845.	4.8	7
7	Profiling Levels of Serum microRNAs and Soluble ACE2 in COVID-19 Patients. Life, 2022, 12, 575.	2.4	10
8	Reduced Retinoic Acid Receptor Beta (Rarβ) Affects Pancreatic β-Cell Physiology. Biology, 2022, 11, 1072.	2.8	1
9	Reduced Expression of Chl1 gene Impairs Insulin Secretion by Down-Regulating the Expression of Key Molecules of β-cell Function. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, 864-872.	1.2	9
10	Dimethyloxalylglycine (DMOG) and the Caspase Inhibitor "Ac-LETD-CHO―Protect Neuronal ND7/23 Cells of Gluocotoxicity. Experimental and Clinical Endocrinology and Diabetes, 2021, 129, 420-428.	1.2	3
11	Vitamin A levels are decreased but not influenced by glucose- or lipid-lowering medications in subjects with type 2 diabetes. Saudi Journal of Biological Sciences, 2021, 28, 572-577.	3.8	5
12	Carnosic Acid Induces Apoptosis and Inhibits Akt/mTOR Signaling in Human Gastric Cancer Cell Lines. Pharmaceuticals, 2021, 14, 230.	3.8	21
13	Expression of SARS-CoV-2 receptor "ACE2―in human pancreatic β cells: to be or not to be!. Islets, 2021, 13, 106-114.	1.8	12
14	The Coffee Diterpene, Kahweol, Ameliorates Pancreatic β-Cell Function in Streptozotocin (STZ)-Treated Rat INS-1 Cells through NF-kB and p-AKT/Bcl-2 Pathways. Molecules, 2021, 26, 5167.	3.8	12
15	Heme Oxygenase-1 (HMOX-1) and inhibitor of differentiation proteins (ID1, ID3) are key response mechanisms against iron-overload in pancreatic β-cells. Molecular and Cellular Endocrinology, 2021, 538, 111462.	3.2	18
16	Copine 3 "CPNE3―is a novel regulator for insulin secretion and glucose uptake in pancreatic β-cells. Scientific Reports, 2021, 11, 20692.	3.3	11
17	The Case for an Estrogen-iron Axis in Health and Disease. Experimental and Clinical Endocrinology and Diabetes, 2020, 128, 270-277.	1.2	18
18	Orphan G-protein coupled receptor 183 (GPR183) potentiates insulin secretion and prevents glucotoxicity-induced l²-cell dysfunction. Molecular and Cellular Endocrinology, 2020, 499, 110592.	3.2	14

#	Article	IF	CITATIONS
19	Expression Profile of SARS-CoV-2 Host Receptors in Human Pancreatic Islets Revealed Upregulation of ACE2 in Diabetic Donors. Biology, 2020, 9, 215.	2.8	47
20	Combined intake of glucose-and lipid-lowering medications further elevates plasma levels of PCSK9 in type 2 diabetes patients. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2020, 14, 2087-2092.	3.6	4
21	Genetic Variants of the PLCXD3 Gene Are Associated with Risk of Metabolic Syndrome in the Emirati Population. Genes, 2020, 11, 665.	2.4	3
22	An Integrative Phenotype–Genotype Approach Using Phenotypic Characteristics from the UAE National Diabetes Study Identifies HSD17B12 as a Candidate Gene for Obesity and Type 2 Diabetes. Genes, 2020, 11, 461.	2.4	16
23	Estrogen Signaling Induces Mitochondrial Dysfunction-Associated Autophagy and Senescence in Breast Cancer Cells. Biology, 2020, 9, 68.	2.8	5
24	GNAS gene is an important regulator of insulin secretory capacity in pancreatic β-cells. Gene, 2019, 715, 144028.	2.2	19
25	<i>RORB</i> and <i>RORC</i> associate with human islet dysfunction and inhibit insulin secretion in INS-1 cells. Islets, 2019, 11, 10-20.	1.8	15
26	Potential role of hypothalamic microRNAs in regulation of FOS and FTO expression in response to hypoglycemia. Journal of Physiological Sciences, 2019, 69, 981-991.	2.1	12
27	Reduced Expression of PLCXD3 Associates With Disruption of Glucose Sensing and Insulin Signaling in Pancreatic β-Cells. Frontiers in Endocrinology, 2019, 10, 735.	3.5	18
28	Prediabetes and diabetes prevalence and risk factors comparison between ethnic groups in the United Arab Emirates. Scientific Reports, 2019, 9, 17437.	3.3	37
29	Silencing of the FTO gene inhibits insulin secretion: An in vitro study using GRINCH cells. Molecular and Cellular Endocrinology, 2018, 472, 10-17.	3.2	23
30	Maturity-Onset Diabetes of the Young: An Overview with Focus on the Middle East. Current Molecular Medicine, 2018, 17, 549-562.	1.3	6
31	Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Human Molecular Genetics, 2015, 24, 1945-1955.	2.9	89
32	A Central Role for GRB10 in Regulation of Islet Function in Man. PLoS Genetics, 2014, 10, e1004235.	3.5	164
33	Downregulation of Type II Diabetes Mellitus and Maturity Onset Diabetes of Young Pathways in Human Pancreatic Islets from Hyperglycemic Donors. Journal of Diabetes Research, 2014, 2014, 1-7.	2.3	11
34	Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13924-13929.	7.1	407
35	Expression profiling of cell cycle genes in human pancreatic islets with and without type 2 diabetes. Molecular and Cellular Endocrinology, 2013, 375, 35-42.	3.2	47
36	Autoimmunity against INS-IGF2 Protein Expressed in Human Pancreatic Islets*. Journal of Biological Chemistry, 2013, 288, 29013-29023.	3.4	33

#	Article	IF	CITATIONS
37	Effects of Common Genetic Variants Associated With Type 2 Diabetes and Glycemic Traits on α- and β-Cell Function and Insulin Action in Humans. Diabetes, 2013, 62, 2978-2983.	0.6	85
38	Secreted Frizzled-Related Protein 4 Reduces Insulin Secretion and Is Overexpressed in Type 2 Diabetes. Cell Metabolism, 2012, 16, 625-633.	16.2	166
39	A Systems Genetics Approach Identifies Genes and Pathways for Type 2 Diabetes in Human Islets. Cell Metabolism, 2012, 16, 122-134.	16.2	323
40	Reduced insulin secretion correlates with decreased expression of exocytotic genes in pancreatic islets from patients with type 2 diabetes. Molecular and Cellular Endocrinology, 2012, 364, 36-45.	3.2	111
41	γ-Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia, 2012, 55, 1985-1994.	6.3	85
42	A common variant upstream of the PAX6 gene influences islet function in man. Diabetologia, 2012, 55, 94-104.	6.3	28
43	A Common Variant in TFB1M Is Associated with Reduced Insulin Secretion and Increased Future Risk of Type 2 Diabetes. Cell Metabolism, 2011, 13, 80-91.	16.2	81
44	Genome-Wide Association Identifies Nine Common Variants Associated With Fasting Proinsulin Levels and Provides New Insights Into the Pathophysiology of Type 2 Diabetes. Diabetes, 2011, 60, 2624-2634.	0.6	335
45	Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA1c levels in human pancreatic islets. Diabetologia, 2011, 54, 360-367.	6.3	219
46	Pleiotropic Effects of GIP on Islet Function Involve Osteopontin. Diabetes, 2011, 60, 2424-2433.	0.6	83
47	Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. European Journal of Endocrinology, 2011, 165, 589-595.	3.7	64
48	Enhancement of glucagon secretion in mouse and human pancreatic alpha cells by protein kinase C (PKC) involves intracellular trafficking of PKCα and PKCδ. Diabetologia, 2010, 53, 717-729.	6.3	19
49	Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nature Genetics, 2010, 42, 142-148.	21.4	591
50	Tight Coupling between Glucose and Mitochondrial Metabolism in Clonal β-Cells Is Required for Robust Insulin Secretion. Journal of Biological Chemistry, 2009, 284, 32395-32404.	3.4	97
51	A Variant in the <i>KCNQ1</i> Gene Predicts Future Type 2 Diabetes and Mediates Impaired Insulin Secretion. Diabetes, 2009, 58, 2409-2413.	0.6	86
52	Bone marrow transplantation stimulates pancreatic βâ^'cell replication after tissue damage. Islets, 2009, 1, 10-18.	1.8	14
53	Longâ€ŧerm accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia, 2009, 57, 835-849.	4.9	320
54	Failure of Transplanted Bone Marrow Cells to Adopt a Pancreatic Â-Cell Fate. Diabetes, 2006, 55, 290-296.	0.6	112

#	Article	IF	CITATIONS
55	Notch Activation Converts B Cells into a T Cell Fate at the Earliest Stages of B Cell Committed Progenitors Blood, 2005, 106, 3151-3151.	1.4	0
56	Bone marrow–derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nature Medicine, 2004, 10, 494-501.	30.7	981
57	Influence of activated charcoal, porcine gastric mucin and β-cyclodextrin on the morphology and growth of intestinal and gastric Helicobacter spp Microbiology (United Kingdom), 2002, 148, 677-684.	1.8	20
58	Identification of <i>Helicobacter pylori</i> and Other <i>Helicobacter</i> Species by PCR, Hybridization, and Partial DNA Sequencing in Human Liver Samples from Patients with Primary Sclerosing Cholangitis or Primary Biliary Cirrhosis. Journal of Clinical Microbiology, 2000, 38, 1072-1076.	3.9	241