B Babbette Lamarca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3995261/publications.pdf Version: 2024-02-01

		76326	110387
123	4,445	40	64
papers	citations	h-index	g-index
123	123	123	3255
all docs	docs citations	times ranked	citing authors

R RABBETTE LAMARCA

#	Article	IF	CITATIONS
1	Is Mitochondrial Oxidative Stress a Viable Therapeutic Target in Preeclampsia?. Antioxidants, 2022, 11, 210.	5.1	4
2	Salt, Aldosterone, and the Reninâ \in "Angiotensin System in Pregnancy. , 2022, , 335-353.		1
3	Maternal B Cell Depletion Reduces Blood Pressure and Improves Fetal Weights in Male Offspring of a Rat Model of Preeclampsia. FASEB Journal, 2022, 36, .	0.5	0
4	The Role of B Cells in Mediating Hypertension in Preeclampsia or COVIDâ€19 Infection During Pregnancy. FASEB Journal, 2022, 36, .	0.5	1
5	CD4+T Cells cause increased glucose, mitochondrial dysfunction, and hypertension in a Novel Pregnant Rodent Model of Gestational Diabetes Mellitus. FASEB Journal, 2022, 36, .	0.5	0
6	IL17 administration in the Absence of T cells Results in Hypertension, NK cell Activation, and Reduced Pup Weight at Birth, but No Changes in Blood Pressure or Weight at Maturation of Offspring. FASEB Journal, 2022, 36, .	0.5	0
7	Progesterone prolongs time to delivery and attenuates blood pressure possibly by improving inflammation and endothelial function in response to preeclampsia. FASEB Journal, 2022, 36, .	0.5	Ο
8	CD4+ T cells cause renal and placental mitochondrial oxidative stress as mechanisms of hypertension in response to placental ischemia. American Journal of Physiology - Renal Physiology, 2021, 320, F47-F54.	2.7	15
9	Vascular endothelial mitochondrial oxidative stress in response to preeclampsia: a role for angiotension II type 1 autoantibodies. American Journal of Obstetrics & Gynecology MFM, 2021, 3, 100275.	2.6	10
10	Investigation of interleukin-2-mediated changes in blood pressure, fetal growth restriction, and innate immune activation in normal pregnant rats and in a preclinical rat model of preeclampsia. Biology of Sex Differences, 2021, 12, 4.	4.1	6
11	B Cell Depletion During Pregnancy Improves Hypertension, Natural Killer Cell Activation, and May Not Worsen Fetal Outcomes in Response to Placental Ischemia. FASEB Journal, 2021, 35, .	0.5	О
12	Progesterone-induced blocking factor improves blood pressure, inflammation, and pup weight in response to reduced uterine perfusion pressure (RUPP). American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 320, R719-R727.	1.8	14
13	ILâ€17 causes hypertension and multiâ€organ tissue dysfunction which is attenuated with blockade of agonistic autoantibodies to the angiotensin II type I (AT1â€AA) receptor during pregnancy. FASEB Journal, 2021, 35, .	0.5	Ο
14	Progesterone and PIBF: new insights into treatment options for preeclampsia. FASEB Journal, 2021, 35, .	0.5	0
15	The Importance of B Cells in Causing Hypertension During Pregnancy; to B or Not to B. FASEB Journal, 2021, 35, .	0.5	Ο
16	Low Dose of IL-2 Normalizes Hypertension and Mitochondrial Function in the RUPP Rat Model of Placental Ischemia. Cells, 2021, 10, 2797.	4.1	4
17	Progesterone Induced Blocking Factor Reduces Hypertension and Placental Mitochondrial Dysfunction in Response to sFlt-1 during Pregnancy. Cells, 2021, 10, 2817.	4.1	7
18	Characterization of Mitochondrial Bioenergetics in Preeclampsia. Journal of Clinical Medicine, 2021, 10, 5063.	2.4	13

#	Article	IF	CITATIONS
19	17-Hydroxyprogesterone caproate improves T cells and NK cells in response to placental ischemia; new mechanisms of action for an old drug. Pregnancy Hypertension, 2020, 19, 226-232.	1.4	16
20	17-Hydroxyprogesterone caproate improves hypertension and renal endothelin-1 in response to sFlt-1 induced hypertension in pregnant rats. Pregnancy Hypertension, 2020, 22, 151-155.	1.4	6
21	Tumor necrosis factor alpha (TNF-α) blockade improves natural killer cell (NK) activation, hypertension, and mitochondrial oxidative stress in a preclinical rat model of preeclampsia. Hypertension in Pregnancy, 2020, 39, 399-404.	1.1	19
22	Angiotensin II type 1 receptor autoantibody blockade improves cerebral blood flow autoregulation and hypertension in a preclinical model of preeclampsia. Hypertension in Pregnancy, 2020, 39, 451-460.	1.1	7
23	Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. , 2020, 11, 1315-1349.		26
24	Letter to the Editor: Importance of B cells in response to placental ischemia. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H723-H725.	3.2	1
25	RNA interference therapeutics targeting angiotensinogen ameliorate preeclamptic phenotype in rodent models. Journal of Clinical Investigation, 2020, 130, 2928-2942.	8.2	25
26	Angiotensin II Type I Receptor Agonistic Autoantibody Blockade Improves Cerebral Blood Flow Autoregulation, Blood Brain Barrier Permeability, and Hypertension in the Preâ€Clinical Rat Model of Preeclampsia. FASEB Journal, 2020, 34, 1-1.	0.5	0
27	CD4+ T Cells from RUPP rat model activate NK cells and cause mitochondrial oxidative stress and hypertension in normal pregnant rats. FASEB Journal, 2020, 34, 1-1.	0.5	0
28	Prevention of T Cell Activation in Response to Placental Ischemia Improves Hypertension and Natural Killer Cell Number During Pregnancy. FASEB Journal, 2020, 34, 1-1.	0.5	0
29	Progesterone induced blocking factor improves blood pressure, mitochondrial dysfunction and reactive oxygen species in response to sFltâ€1 induced hypertension during pregnancy. FASEB Journal, 2020, 34, 1-1.	0.5	0
30	Inflammatory mediators: a causal link to hypertension during preeclampsia. British Journal of Pharmacology, 2019, 176, 1914-1921.	5.4	59
31	Placental CD4+ T cells isolated from preeclamptic women cause preeclampsia-like symptoms in pregnant nude-athymic rats. Pregnancy Hypertension, 2019, 15, 7-11.	1.4	13
32	Natural killer cells contribute to mitochondrial dysfunction in response to placental ischemia in reduced uterine perfusion pressure rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R441-R447.	1.8	14
33	Interleukin-4 supplementation improves the pathophysiology of hypertension in response to placental ischemia in RUPP rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R165-R171.	1.8	24
34	Renal natural killer cell activation and mitochondrial oxidative stress; new mechanisms in AT1-AA mediated hypertensive pregnancy. Pregnancy Hypertension, 2019, 15, 72-77.	1.4	32
35	The role of T cells on the elevated blood pressure of female and male PCOS offspring. FASEB Journal, 2019, 33, 593.5.	0.5	0
36	Interleukinâ€4 supplementation improves the proinflammatory cell ratios, autoantibodies and blood pressure in response to placental ischemia. FASEB Journal, 2019, 33, 865.18.	0.5	0

B BABBETTE LAMARCA

#	Article	IF	CITATIONS
37	Arachidonic acid metabolites of CYP4A and CYP4F are altered in women with preeclampsia. Prostaglandins and Other Lipid Mediators, 2018, 136, 15-22.	1.9	22
38	AT1-AA (Angiotensin II Type 1 Receptor Agonistic Autoantibody) Blockade Prevents Preeclamptic Symptoms in Placental Ischemic Rats. Hypertension, 2018, 71, 886-893.	2.7	56
39	Selective inhibition of 20-hydroxyeicosatetraenoic acid lowers blood pressure in a rat model of preeclampsia. Prostaglandins and Other Lipid Mediators, 2018, 134, 108-113.	1.9	5
40	Novel treatment avenues for uterine leiomyoma: a new implication for endothelin?. Clinical Science, 2018, 132, 2261-2267.	4.3	2
41	Risk of cardiovascular disease, end-stage renal disease, and stroke in postpartum women and their fetuses after a hypertensive pregnancy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R521-R528.	1.8	52
42	Role of Mitochondrial Dysfunction and Reactive Oxygen Species in Mediating Hypertension in the Reduced Uterine Perfusion Pressure Rat Model of Preeclampsia. Hypertension, 2018, 72, 703-711.	2.7	112
43	Placental ischemia-stimulated T-helper 17 cells induce preeclampsia-associated cytolytic natural killer cells during pregnancy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R336-R343.	1.8	31
44	The Role of Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor (AT1-AA) in Pathophysiology of Preeclampsia. Current Pharmaceutical Biotechnology, 2018, 19, 781-785.	1.6	49
45	Progesterone induced blocking factor improves fetal growth restriction possibly by reducing inflammation and placental cytolytic NK cells in response to placental ischemia during pregnancy. FASEB Journal, 2018, 32, 729.5.	0.5	Ο
46	Placental Ischemia‧timulated T H 17 Cells Induce Preeclampsiaâ€Associated Cytolytic Natural Killer Cells During Pregnancy. FASEB Journal, 2018, 32, 729.6.	0.5	0
47	The Role of Interleukinâ€⊋ (ILâ€⊋) in Natural Killer Cell (NK) Activation and Hypertension in a Preclinical Rat Model of Preeclampsia. FASEB Journal, 2018, 32, 911.1.	0.5	1
48	Vitamin D supplementation reduces some AT ₁ -AA-induced downstream targets implicated in preeclampsia including hypertension. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 312, R125-R131.	1.8	15
49	Natural killer cells mediate pathophysiology in response to reduced uterine perfusion pressure. Clinical Science, 2017, 131, 2753-2762.	4.3	44
50	Continued Investigation Into 17-OHPC. Hypertension, 2017, 70, 1250-1255.	2.7	20
51	Proliferation of endogenous regulatory T cells improve the pathophysiology associated with placental ischaemia of pregnancy. American Journal of Reproductive Immunology, 2017, 78, e12724.	1.2	22
52	Pathophysiology and Current Clinical Management of Preeclampsia. Current Hypertension Reports, 2017, 19, 61.	3.5	175
53	Identifying immune mechanisms mediating the hypertension during preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1-R9.	1.8	74
54	Serelaxin improves the pathophysiology of placental ischemia in the reduced uterine perfusion pressure rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1158-R1163.	1.8	30

#	Article	IF	CITATIONS
55	Reduced uterine perfusion pressure T-helper 17 cells cause pathophysiology associated with preeclampsia during pregnancy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R1192-R1199.	1.8	61
56	Vitamin D supplementation improves pathophysiology in a rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R346-R354.	1.8	33
57	Placental Ischemia and Resultant Phenotype in Animal Models of Preeclampsia. Current Hypertension Reports, 2016, 18, 38.	3.5	52
58	The role of inflammation in the pathology of preeclampsia. Clinical Science, 2016, 130, 409-419.	4.3	379
59	Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance Angiotensin II–Induced Renal Vascular Sensitivity and Reduce Renal Function During Pregnancy. Hypertension, 2016, 68, 1308-1313.	2.7	44
60	Blockade of CD40 ligand for intercellular communication reduces hypertension, placental oxidative stress, and AT ₁ -AA in response to adoptive transfer of CD4 ⁺ T lymphocytes from RUPP rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R1243-R1250.	1.8	17
61	Preeclampsia: long-term consequences for vascular health. Vascular Health and Risk Management, 2015, 11, 403.	2.3	116
62	17-Hydroxyprogesterone Caproate Significantly Improves Clinical Characteristics of Preeclampsia in the Reduced Uterine Perfusion Pressure Rat Model. Hypertension, 2015, 65, 225-231.	2.7	51
63	IL-10 supplementation increases Tregs and decreases hypertension in the RUPP rat model of preeclampsia. Hypertension in Pregnancy, 2015, 34, 291-306.	1.1	68
64	An increased population of regulatory T cells improves the pathophysiology of placental ischemia in a rat model of preeclampsia. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2015, 309, R884-R891.	1.8	68
65	The Renin-Angiotensin System, its Autoantibodies, and Body Fluid Volume in Preeclampsia. , 2015, , 315-334.		3
66	T Cellâ€Dependent B Cell Activation Mediates Pathophysiology in Reponse to CD4 + T Cells from Reduced Uterine Perfusion Pregnant Rats. FASEB Journal, 2015, 29, 810.4.	0.5	0
67	Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance ANGII Binding on Vascular Endothelial Cells. FASEB Journal, 2015, 29, 810.12.	0.5	Ο
68	Early Administration of 17â€Hydroxyprogesterone Caproate to Reduced Uterine Perfusion Pressure (RUPP) Rat Model of Preeclampsia Improves Inflammation, Uterine artery Vasoconstriction and Blood Pressure During Pregnancy. FASEB Journal, 2015, 29, 810.6.	0.5	0
69	Serelaxin Improves Blood Pressure and Uterine Artery Resistance in the Reduced Uterine Perfusion Pressure (RUPP) Rat Model of Preeclampsia. FASEB Journal, 2015, 29, 810.8.	0.5	0
70	Early Development of Glomerular Injury in Dahl Salt‣ensitive (SS) Rats with Metabolic Syndrome Independent of Diabetes and Hypertension. FASEB Journal, 2015, 29, 964.8.	0.5	0
71	Placental Ischemiaâ€Induced T H 17 Cells Mediate the Pathophysiology Associated with Preeclampsia. FASEB Journal, 2015, 29, 667.6.	0.5	0
72	Magnesium Sulfate Treatment Reverses Seizure Susceptibility and Decreases Neuroinflammation in a Rat Model of Severe Preeclampsia. PLoS ONE, 2014, 9, e113670.	2.5	81

B BABBETTE LAMARCA

#	Article	IF	CITATIONS
73	Enodthelin 1 Is Elevated in Plasma and Explants From Patients Having Uterine Leiomyomas. Reproductive Sciences, 2014, 21, 1196-1205.	2.5	23
74	CD4 ⁺ T Cells Are Important Mediators of Oxidative Stress That Cause Hypertension in Response to Placental Ischemia. Hypertension, 2014, 64, 1151-1158.	2.7	37
75	Preventing Autoimmunity Protects Against the Development of Hypertension and Renal Injury. Hypertension, 2014, 64, 792-800.	2.7	75
76	Progesterone supplementation attenuates hypertension andÂthe autoantibody to the angiotensin II type I receptor inÂresponse to elevated interleukin-6 during pregnancy. American Journal of Obstetrics and Gynecology, 2014, 211, 158.e1-158.e6.	1.3	26
77	ILâ€10 supplementation suppressed hypertension and inflammation in response to placental ischemia during pregnancy (860.17). FASEB Journal, 2014, 28, 860.17.	0.5	Ο
78	Administration of Interleukin-17 Soluble Receptor C Suppresses T _H 17 Cells, Oxidative Stress, and Hypertension in Response to Placental Ischemia During Pregnancy. Hypertension, 2013, 62, 1068-1073.	2.7	99
79	Elucidating Immune Mechanisms Causing Hypertension During Pregnancy. Physiology, 2013, 28, 225-233.	3.1	78
80	Progesterone blunts vascular endothelial cell secretion ofÂendothelin-1 in response to placental ischemia. American Journal of Obstetrics and Gynecology, 2013, 209, 44.e1-44.e6.	1.3	39
81	Endothelin-1, Oxidative Stress, and Endogenous Angiotensin II. Hypertension, 2013, 62, 886-892.	2.7	82
82	Angiotensin <scp>II</scp> Type 1 Receptor Autoantibody (<scp>AT</scp> 1â€ <scp>AA</scp>)â€Mediated Pregnancy Hypertension. American Journal of Reproductive Immunology, 2013, 69, 413-418.	1.2	81
83	CD4+ T Cells Play a Critical Role in Mediating Hypertension in Response to Placental Ischemia. Journal of Hypertension: Open Access, 2013, 02, .	0.2	28
84	Blunting Circulating TH17 cells Decreases Hypertension and Oxidative Stress in Response to Placental Ischemia. FASEB Journal, 2013, 27, 1115.4.	0.5	0
85	Cerebral White Matter CD4+ T cell Infiltration is Associated with Hypertension in a rat model of HELLP Syndrome. FASEB Journal, 2013, 27, 691.12.	0.5	Ο
86	Hypertension in a rat model of HELLP Syndrome is associated with Increased TNFâ€alpha, ILâ€6 and CD4+ T cell activation. FASEB Journal, 2013, 27, 1115.7.	0.5	0
87	Humoral immune system activation promotes the development of hypertension. FASEB Journal, 2013, 27, 906.4.	O.5	1
88	Endothelin-1 is not a Mechanism of IL-17 Induced Hypertension during Pregnancy. Medical Journal of Obstetrics and Gynecology, 2013, 1, .	0.2	10
89	Vitamin D Supplementation Suppresses Hypoxia-Stimulated Placental Cytokine Secretion, Hypertension and CD4 T Cell Stimulation in Response to Placental Ischemia. Medical Journal of Obstetrics and Gynecology, 2013, 1, .	0.2	8
90	A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H1-H8.	3.2	163

#	Article	IF	CITATIONS
91	Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4 ⁺ T lymphocytes from placental ischemic rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1197-R1201.	1.8	65
92	Hypertension in response to CD4+ T cells from reduced uterine perfusion pregnant rats is associated with activation of the endothelin-1 system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R144-R149.	1.8	40
93	<scp>l</scp> -Arginine supplementation abolishes the blood pressure and endothelin response to chronic increases in plasma sFlt-1 in pregnant rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R259-R263.	1.8	38
94	Cytochrome P450 Subfamily 2J Polypeptide 2 Expression and Circulating Epoxyeicosatrienoic Metabolites in Preeclampsia. Circulation, 2012, 126, 2990-2999.	1.6	57
95	IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R353-R358.	1.8	114
96	Agonistic Autoantibodies to the Angiotensin II Type I Receptor Cause Pathophysiologic Characteristics of Preeclampsia. Gender Medicine, 2012, 9, 139-146.	1.4	42
97	Role of angiotensin II type I receptor agonistic autoantibodies (AT1-AA) in preeclampsia. Current Opinion in Pharmacology, 2011, 11, 175-179.	3.5	64
98	Hypertension in response to IL-6 during pregnancy: role of AT1-receptor activation. International Journal of Interferon, Cytokine and Mediator Research, 2011, 2011, 65.	1.1	59
99	233: T Lymphocyte induced AT1-AAs cause hypertension in response to placental ischemia. American Journal of Obstetrics and Gynecology, 2011, 204, S100.	1.3	1
100	Endothelin type A receptor antagonist attenuates placental ischemia–induced hypertension and uterine vascular resistance. American Journal of Obstetrics and Gynecology, 2011, 204, 330.e1-330.e4.	1.3	55
101	Hypertension in Response to AT1-AA: Role of Reactive Oxygen Species in Pregnancy-Induced Hypertension. American Journal of Hypertension, 2011, 24, 835-840.	2.0	67
102	Hypertension in Response to Placental Ischemia During Pregnancy. Hypertension, 2011, 57, 865-871.	2.7	107
103	Role of Reactive Oxygen Species During Hypertension in Response to Chronic Antiangiogenic Factor (sFlt-1) Excess in Pregnant Rats. American Journal of Hypertension, 2011, 24, 110-113.	2.0	34
104	CD4 ⁺ T-Helper Cells Stimulated in Response to Placental Ischemia Mediate Hypertension During Pregnancy. Hypertension, 2011, 57, 949-955.	2.7	118
105	IL-6-induced pathophysiology during pre-eclampsia: potential therapeutic role for magnesium sulfate?. International Journal of Interferon, Cytokine and Mediator Research, 2011, 2011, 59.	1.1	59
106	The Effect of Immune Factors, Tumor Necrosis Factor-Â, and Agonistic Autoantibodies to the Angiotensin II Type I Receptor on Soluble fms-Like Tyrosine-1 and Soluble Endoglin Production in Response to Hypertension During Pregnancy. American Journal of Hypertension, 2010, 23, 911-916.	2.0	129
107	PLACENTAL ISCHEMIA TRIGGERS IMMUNE ACTIVATION AS LEUKOCYTE OVERPRODUCTION OF SFItâ€1: A STEP IN THE PATHOGENESIS OF PREECLAMPSIA?. FASEB Journal, 2010, 24, 793.12.	0.5	Ο
108	Hypertension in response to agonistic autoantibodies to the angiotensin II type I receptor (AT1â€AA): role of reactive oxygen species (ROS). FASEB Journal, 2010, 24, 1025.6.	0.5	0

B BABBETTE LAMARCA

#	Article	IF	CITATIONS
109	Progesterone inhibits trophoblast TNF alpha production FASEB Journal, 2010, 24, 793.13.	0.5	2
110	Effects of 17-Hydroxyprogesterone on Tumor Necrosis Factor-Â-Induced Hypertension During Pregnancy. American Journal of Hypertension, 2009, 22, 1120-1125.	2.0	41
111	Hypertension in Response to Autoantibodies to the Angiotensin II Type I Receptor (AT1-AA) in Pregnant Rats. Hypertension, 2009, 54, 905-909.	2.7	185
112	17-hydroxyprogesterone blunts the hypertensive response associated with reductions in uterine perfusion pressure in pregnant rats. American Journal of Obstetrics and Gynecology, 2009, 201, 324.e1-324.e6.	1.3	19
113	Soluble fmsâ€like tyrosineâ€1 (sFltâ€1) is enhanced in response to chronic tumor necrosis factor―alpha excess during pregnancy. FASEB Journal, 2009, 23, 805.4.	0.5	0
114	Autoantibodies to the Angiotensin Type I Receptor in Response to Placental Ischemia and Tumor Necrosis Factor \hat{I}_{\pm} in Pregnant Rats. Hypertension, 2008, 52, 1168-1172.	2.7	153
115	Hypertension in Response to Chronic Reductions in Uterine Perfusion in Pregnant Rats. Hypertension, 2008, 52, 1161-1167.	2.7	150
116	Soluble fmsâ€like tyrosineâ€1 (sFltâ€1) production in response to placental ischemia and hypoxia in placenta of pregnant rats. FASEB Journal, 2008, 22, 969.19.	0.5	0
117	Endothelial cell activation in response to placental ischemia in pregnant rats is mediated by agonistic autoantibodies to the angiotensin type I receptor. FASEB Journal, 2008, 22, .	0.5	0
118	Agonistic autoantibodies to the angiotensin II type 1 receptor increases Angiotensin IIâ€induced ETâ€1 production. FASEB Journal, 2008, 22, 969.18.	0.5	0
119	Effects of Reduced Uterine Perfusion Pressure on Blood Pressure and Metabolic Factors in Pregnant Rats. American Journal of Hypertension, 2007, 20, 686-691.	2.0	48
120	Effects of reduced uterine perfusion pressure on blood pressure and metabolic factors in the pregnant rat. FASEB Journal, 2007, 21, A894.	0.5	3
121	The role of angiotensin II type I receptor activation in mediating TNF alphaâ€induced hypertension in the pregnant rat FASEB Journal, 2007, 21, A592.	0.5	1
122	Endothelin, the kidney, and hypertension. Current Hypertension Reports, 2006, 8, 298-303.	3.5	38
123	Placental CD4+ T cells from preeclamptic patients cause autoantibodies to the angiotensin II type I receptor and hypertension in a pregnant rat model of preeclampsia. Exploration of Medicine, 0, , 99-111.	1.5	6