
Reda A I Abou-Shanaba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3994417/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS			
1	Bioaugmentation with As-transforming bacteria improves arsenic availability and uptake by the hyperaccumulator plant <i>Pteris vittata</i> (L) International Journal of Phytoremediation, 2022, 24, 420-428.	3.1	6			
2	Indigenous soil bacteria and the hyperaccumulator Pteris vittata mediate phytoremediation of soil contaminated with arsenic species. Ecotoxicology and Environmental Safety, 2020, 195, 110458.	6.0	32			
3	Role of Rhizobacteria in Phytoremediation of Metal-Impacted Sites. , 2019, , 299-328.		8			
4	Genome-Wide Association Analyses in the Model Rhizobium <i>Ensifer meliloti</i> . MSphere, 2018, 3, .	2.9	26			
5	Competition between introduced Bradyrhizobium japonicum strains and indigenous bradyrhizobia in Minnesota organic farming systems. Symbiosis, 2017, 73, 155-163.	2.3	14			
6	Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production. Energy Conversion and Management, 2016, 121, 105-112.	9.2	20			
7	Effect of Brachionus rubens on the growth characteristics of various species of microalgae. Electronic Journal of Biotechnology, 2016, 22, 68-74.	2.2	10			
8	Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 2016, 219, 98-105.	9.6	86			
9	Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology, 2016, 205, 183-190.	9.6	328			
10	Perchlorate reduction from a highly concentrated aqueous solution by bacterium Rhodococcus sp. YSPW03. Environmental Science and Pollution Research, 2015, 22, 18839-18848.	5.3	3			
11	Application of acid mine drainage for coagulation/flocculation of microalgal biomass. Bioresource Technology, 2015, 186, 232-237.	9.6	20			
12	The effects of salinity on the growth and biochemical properties of <i>Chlamydomonas mexicana</i> GU732420 cultivated in municipal wastewater. Environmental Technology (United) Tj ETQq0 0 0 rgB12/Øverloc1800 Tf 50					
13	Influence of CO2 and light spectra on the enhancement of microalgal growth and lipid content. Journal of Renewable and Sustainable Energy, 2014, 6, 063107.	2.0	10			
14	Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnology and Bioprocess Engineering, 2014, 19, 510-518.	2.6	61			
15	Biodegradation of bisphenol A by the freshwater microalgae Chlamydomonas mexicana and Chlorella vulgaris. Ecological Engineering, 2014, 73, 260-269.	3.6	129			
16	Ultrasonic disintegration of microalgal biomass and consequent improvement of bioaccessibility/bioavailability in microbial fermentation. Biotechnology for Biofuels, 2013, 6, 37.	6.2	63			
17	Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecological Engineering, 2013, 58, 142-148.	3.6	195			
18	Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Applied Microbiology and Biotechnology, 2013, 97, 2701-2710.	3.6	113			

10	Chlorella vulgaris	YSW-04. Applied	d Microbic	ology and I	Biotechnology,	2013, 97,	2701-271
----	--------------------	-----------------	------------	-------------	----------------	-----------	----------

2

#	Article	IF	CITATIONS
19	Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. Journal of Environmental Management, 2013, 115, 257-264.	7.8	245
20	Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and Biosystems Engineering, 2013, 36, 827-833.	3.4	177
21	Municipal wastewater utilization for biomass and biodiesel production by <i>Scenedesmus obliquus</i> HM103382 and <i>Micractinium reisseri</i> JN169781. Journal of Renewable and Sustainable Energy, 2013, 5, .	2.0	17
22	Removal of Nitrogen and Phosphorus from Piggery Wastewater Effluent Using the Green Microalga <i>Scenedesmus obliquus</i> . Journal of Environmental Engineering, ASCE, 2013, 139, 1198-1205.	1.4	66
23	Removal of nitrate from groundwater using ZVI treatment system combined with continuous CO2gas bubbling. Geosystem Engineering, 2012, 15, 60-65.	1.4	5
24	Nitrate and ammonium ions removal from groundwater by a hybrid system of zero-valent iron combined with adsorbents. Journal of Environmental Monitoring, 2012, 14, 1153.	2.1	9
25	Enhancement of fermentative bioenergy (ethanol/hydrogen) production using ultrasonication of Scenedesmus obliquus YSW15 cultivated in swine wastewater effluent. Energy and Environmental Science, 2011, 4, 3513.	30.8	82
26	Hydrogen production from sulfate- and ferrous-enriched wastewater. International Journal of Hydrogen Energy, 2011, 36, 13984-13990.	7.1	12
27	Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Applied Energy, 2011, 88, 3300-3306.	10.1	146
28	Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass and Bioenergy, 2011, 35, 3079-3085.	5.7	82
29	Feasibility of hydrogen production from ripened fruits by a combined two-stage (dark/dark) fermentation system. Bioresource Technology, 2011, 102, 1051-1058.	9.6	44
30	Removal of nitrate and ammonium ions from livestock wastewater by hybrid systems composed of zero-valent iron and adsorbents. Environmental Technology (United Kingdom), 2011, 32, 1851-1857.	2.2	24