Ana I.R.N.A. Barros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/399440/publications.pdf Version: 2024-02-01

159525 182361 3,082 109 30 51 citations h-index g-index papers 112 112 112 4162 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. International Journal of Molecular Sciences, 2014, 15, 15638-15678.	1.8	413
2	Cowpea (<i>Vigna unguiculata</i> L. Walp), a renewed multipurpose crop for a more sustainable agriâ€food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture, 2016, 96, 2941-2951.	1.7	169
3	Modification of wheat straw lignin by solid state fermentation with white-rot fungi. Bioresource Technology, 2009, 100, 4829-4835.	4.8	148
4	Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Scientific Reports, 2021, 11, 10041.	1.6	118
5	Effect of cooking on total vitamin C contents and antioxidant activity of sweet chestnuts (Castanea) Tj ETQq1 1	0.784314 4.2	rgBT /Overlo
6	Diagnosis and management of hyperprolactinemia: Results of a Brazilian multicenter study with 1234 patients. Journal of Endocrinological Investigation, 2008, 31, 436-444.	1.8	97
7	Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cv. "Cobrançosa―under different irrigation regimes. Food Research International, 2013, 51, 412-421.	2.9	80
8	Potential application of grape (Vitis vinifera L.) stem extracts in the cosmetic and pharmaceutical industries: Valorization of a by-product. Industrial Crops and Products, 2020, 154, 112675.	2.5	75
9	Valorization Challenges to Almond Residues: Phytochemical Composition and Functional Application. Molecules, 2017, 22, 1774.	1.7	70
10	Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Research International, 2014, 65, 375-384.	2.9	68
11	Effect of extraction method and solvent system on the phenolic content and antioxidant activity of selected macro- and microalgae extracts. Journal of Applied Phycology, 2020, 32, 349-362.	1.5	64
12	Discrimination and characterisation of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chemistry, 2015, 174, 226-232.	4.2	59
13	Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules, 2017, 22, 1986.	1.7	57
14	Assessment of (poly)phenols in grape (Vitis vinifera L.) stems by using food/pharma industry compatible solvents and Response Surface Methodology. Food Chemistry, 2014, 164, 339-346.	4.2	53
15	Selenium contents of Portuguese commercial and wild edible mushrooms. Food Chemistry, 2011, 126, 91-96.	4.2	52
16	Monitoring the antioxidant and antimicrobial power of grape (Vitis vinifera L.) stems phenolics over long-term storage. Industrial Crops and Products, 2018, 126, 83-91.	2.5	47
17	Impact of cooking method on phenolic composition and antioxidant potential of four varieties of Phaseolus vulgaris L. and Glycine max L LWT - Food Science and Technology, 2019, 103, 238-246.	2.5	43
18	Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of Rocha variety (Pyrus communis L.). Journal of Food Measurement and Characterization, 2014, 8, 105-112.	1.6	42

#	Article	IF	CITATIONS
19	Phytochemistry and activity against digestive pathogens of grape (Vitis vinifera L.) stem's (poly)phenolic extracts. LWT - Food Science and Technology, 2015, 61, 25-32.	2.5	42
20	Nutrients, Antinutrients, Phenolic Composition, and Antioxidant Activity of Common Bean Cultivars and their Potential for Food Applications. Antioxidants, 2020, 9, 186.	2.2	41
21	Effects of calcium and growth regulators on sweet cherry (Prunus avium L.) quality and sensory attributes at harvest. Scientia Horticulturae, 2019, 248, 231-240.	1.7	39
22	Phenolic Composition and Antioxidant Activity of Monovarietal and Commercial Portuguese Olive Oils. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 1197-1203.	0.8	38
23	Study of adulteration of extra virgin olive oil with peanut oil using FTIR spectroscopy and chemometrics. Cogent Food and Agriculture, 2015, 1, 1018695.	0.6	37
24	Oxidative stress prevention and anti-apoptosis activity of grape (Vitis vinifera L.) stems in human keratinocytes. Food Research International, 2016, 87, 92-102.	2.9	36
25	Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy for the determination of nutritional and antinutritional parameters in common beans. Food Chemistry, 2020, 306, 125509.	4.2	35
26	The quality of leguminous vegetables as influenced by preharvest factors. Scientia Horticulturae, 2018, 232, 191-205.	1.7	34
27	Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells. Food and Function, 2013, 4, 575.	2.1	33
28	A novel, direct, reagent-free method for the detection of beeswax adulteration by single-reflection attenuated total reflectance mid-infrared spectroscopy. Talanta, 2013, 107, 74-80.	2.9	33
29	Grape stems as a source of bioactive compounds: application towards added-value commodities and significance for human health. Phytochemistry Reviews, 2015, 14, 921-931.	3.1	32
30	New grape stems' isolated phenolic compounds modulate reactive oxygen species, glutathione, and lipid peroxidation in vitro: Combined formulations with vitamins C and E. FA¬toterapA¬A¢, 2017, 120, 146-157.	1.1	32
31	Enhanced phytochemical composition and biological activities of grape (Vitis vinifera L.) Stems growing in low altitude regions. Scientia Horticulturae, 2020, 265, 109248.	1.7	32
32	NMR and Structural and Conformational Features of 2′-Hydroxychalcones and Flavones. Spectroscopy Letters, 1997, 30, 1655-1667.	0.5	31
33	Kaolin and salicylic acid foliar application modulate yield, quality and phytochemical composition of olive pulp and oil from rainfed trees. Scientia Horticulturae, 2018, 237, 176-183.	1.7	29
34	Synthesis, experimental and theoretical NMR study of 2′-hydroxychalcones bearing a nitro substituent on their B ring. Tetrahedron, 2004, 60, 6513-6521.	1.0	28
35	Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta, 2015, 132, 829-835.	2.9	28
36	Oxidation of mannosyl oligosaccharides by hydroxyl radicals as assessed by electrospray mass spectrometry. Carbohydrate Research, 2011, 346, 2603-2611.	1.1	26

#	Article	IF	CITATIONS
37	Acorn Flour as a Source of Bioactive Compounds in Gluten-Free Bread. Molecules, 2020, 25, 3568.	1.7	26
38	A fast, simple, and reliable hydrophilic interaction liquid chromatography method for the determination of ascorbic and isoascorbic acids. Analytical and Bioanalytical Chemistry, 2010, 396, 1863-1875.	1.9	25
39	Phenolic rich extracts from cowpea sprouts decrease cell proliferation and enhance 5-fluorouracil effect in human colorectal cancer cell lines. Journal of Functional Foods, 2019, 60, 103452.	1.6	25
40	One-pot synthesis of 2-(2-hydroxyaryl)quinolines: reductive coupling reactions of 2′-hydroxy-2-nitrochalcones. Tetrahedron Letters, 2003, 44, 5893-5896.	0.7	24
41	Prediction of Phytochemical Composition, In Vitro Antioxidant Activity and Individual Phenolic Compounds of Common Beans Using MIR and NIR Spectroscopy. Food and Bioprocess Technology, 2020, 13, 962-977.	2.6	23
42	Recovery of bioactive compounds from white grape (Vitis vinifera L.) stems as potential antimicrobial agents for human health. Saudi Journal of Biological Sciences, 2020, 27, 1009-1015.	1.8	23
43	Variation in liana abundance and biomass along an elevational gradient in the tropical Atlantic Forest (Brazil). Ecological Research, 2012, 27, 323-332.	0.7	22
44	Irrigation deficit turns almond by-products into a valuable source of antimicrobial (poly)phenols. Industrial Crops and Products, 2019, 132, 186-196.	2.5	22
45	Physiological and biochemical performance of almond trees under deficit irrigation. Scientia Horticulturae, 2020, 261, 108990.	1.7	22
46	Efficient Synthesis of Nitroflavones by Cyclodehydrogenation of 2′-Hydroxychalcones and by the Baker-Venkataraman Method. Monatshefte Für Chemie, 2006, 137, 1505-1528.	0.9	20
47	â€~Cobrançosa' Olive Oil and Drupe: Chemical Composition at Two Ripening Stages. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 599-611.	0.8	20
48	Interactions of a new 2-styrylchromone with mitochondrial oxidative phosphorylation. Journal of Biochemical and Molecular Toxicology, 2002, 16, 220-226.	1.4	19
49	A Box-Behnken Design for Optimal Extraction of Phenolics from Almond By-products. Food Analytical Methods, 2019, 12, 2009-2024.	1.3	19
50	Quantification of Chemical Characteristics of Olive Fruit and Oil of cv Cobrançosa in Two Ripening Stages Using MIR Spectroscopy and Chemometrics. Food Analytical Methods, 2015, 8, 1490-1498.	1.3	18
51	Potential of Legumes: Nutritional Value, Bioactive Properties, Innovative Food Products, and Application of Eco-friendly Tools for Their Assessment. Food Reviews International, 2023, 39, 160-188.	4.3	18
52	Selenium content of Portuguese unifloral honeys. Journal of Food Composition and Analysis, 2011, 24, 351-355.	1.9	16
53	Impact of Acorn Flour on Gluten-Free Dough Rheology Properties. Foods, 2020, 9, 560.	1.9	16
54	Reductive Coupling Reactions of 2-Nitrochalcones and their β-Hydroxy-analogues: New Syntheses of 2-Arylquinoline and 2-Aryl-4-hydroxyquinoline Derivatives. Monatshefte FÃ1⁄4r Chemie, 2007, 138, 585-594.	0.9	15

#	Article	IF	CITATIONS
55	Characterization and Discrimination of Commercial Portuguese Beers Based on Phenolic Composition and Antioxidant Capacity. Foods, 2021, 10, 1144.	1.9	15
56	Residual Agroforestry Biomass–Thermochemical Properties. Forests, 2019, 10, 1072.	0.9	14
57	Evaluating the freezing impact on the proximate composition of immature cowpea (<i>Vigna) Tj ETQq1 1 0.7843 Food and Agriculture, 2017, 97, 4295-4305.</i>	14 rgBT / 1.7	Overlock 10 13
58	Impact of Colletotrichum acutatum Pathogen on Olive Phenylpropanoid Metabolism. Agriculture (Switzerland), 2019, 9, 173.	1.4	13
59	Impact of Technology and School-Based Nutrition Education Programs on Nutrition Knowledge and Behavior During Adolescence—A Systematic Review. Scandinavian Journal of Educational Research, 2021, 65, 169-180.	1.0	13
60	Evaluation of chemical and phenotypic changes in Blanqueta, Cobrançosa, and Galega during olive fruits ripening. CYTA - Journal of Food, 2013, 11, 136-141.	0.9	12
61	Effect of Agroâ€Environmental Factors on the Mineral Content of Olive Oils: Categorization of the Three Major Portuguese Cultivars. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 813-822.	0.8	12
62	Kinetics of the Polyphenolic Content and Radical Scavenging Capacity in Olives through On-Tree Ripening. Journal of Chemistry, 2017, 2017, 1-11.	0.9	12
63	Drought stress effect on polyphenolic content and antioxidant capacity of cowpea pods and seeds. Journal of Agronomy and Crop Science, 2021, 207, 197-207.	1.7	12
64	Trace Element Content of Monovarietal and Commercial Portuguese Olive Oils. Journal of Oleo Science, 2015, 64, 1083-1093.	0.6	11
65	Chemometric analysis on free amino acids and proximate compositional data for selecting cowpea (Vigna unguiculata L.) diversity. Journal of Food Composition and Analysis, 2016, 53, 69-76.	1.9	11
66	New grape stems-based liqueur: Physicochemical and phytochemical evaluation. Food Chemistry, 2016, 190, 896-903.	4.2	11
67	Assessment of quality parameters and phytochemical content of thirty â€~Tempranillo' grape clones for varietal improvement in two distinct sub-regions of Douro. Scientia Horticulturae, 2020, 262, 109096.	1.7	10
68	Variation of the Polyphenolic Composition and Antioxidant Capacity of Freshly Prepared Pomegranate Leaf Infusions over One-Day Storage. Antioxidants, 2021, 10, 1187.	2.2	10
69			

#	Article	IF	CITATIONS
73	Three in One: The Potential of Brassica By-Products against Economic Waste, Environmental Hazard, and Metabolic Disruption in Obesity. Nutrients, 2021, 13, 4194.	1.7	8
74	Effect of a Sub-Chronic Oral Exposure of Broccoli (Brassica oleracea L. Var. Italica) By-Products Flour on the Physiological Parameters of FVB/N Mice: A Pilot Study. Foods, 2022, 11, 120.	1.9	8
75	Characterization of bioactive compounds and antioxidant capacity of Portuguese craft beers. International Journal of Gastronomy and Food Science, 2022, 27, 100473.	1.3	8
76	Food By-Product Valorization by Using Plant-Based Coagulants Combined with AOPs for Agro-Industrial Wastewater Treatment. International Journal of Environmental Research and Public Health, 2022, 19, 4134.	1.2	8
77	Acorn flour and sourdough: an innovative combination to improve gluten free bread characteristics. European Food Research and Technology, 2022, 248, 1691-1702.	1.6	8
78	Flavone–Nitrogen Heterocycle Conjugate Formation by 1,3â€Đipolar Cycloadditions. European Journal of Organic Chemistry, 2012, 2012, 132-143.	1.2	7
79	Development of a Solid Vinaigrette and Product Testing. Journal of Culinary Science and Technology, 2013, 11, 259-274.	0.6	7
80	Unravelling the nutriproteomics of chickpea (Cicer arietinum) seeds. Crop and Pasture Science, 2017, 68, 1041.	0.7	7
81	Assessing the Relationship Between the Phenolic Content and Elemental Composition of Grape (Vitis) Tj ETQo	1 1 0,78431 1.8	.4 rgBT /Over
82	Synthesis and structure elucidation of five series of aminoflavones using 1D and 2D NMR spectroscopy. Magnetic Resonance in Chemistry, 2006, 44, 1122-1127.	1.1	6
83	Biovalorization of Grape Stalks as Animal Feed by Solid State Fermentation Using White-Rot Fungi. Applied Sciences (Switzerland), 2022, 12, 6800.	1.3	6
84	Spectrophotometric versus <scp>NIRâ€MIR</scp> assessments of cowpea pods for discriminating the impact of freezing. Journal of the Science of Food and Agriculture, 2017, 97, 4285-4294.	1.7	5
85	Nutriproteomics survey of sweet chestnut (Castanea sativa Miller) genetic resources in Portugal. Food Bioscience, 2020, 36, 100622.	2.0	5
86	Pilot evaluation of an interactive multimedia platform to provide nutrition education to Portuguese adolescents. European Journal of Public Health, 2020, 30, 353-357.	0.1	5
87	Effect of total replacement of the soya bean meal by lupine seeds (L. albus and L. luteus) on performance and digestion characteristics of growing rabbits. Animal Feed Science and Technology, 2021, 278, 114996.	1.1	5
88	Application of Fourier transform infrared spectroscopy (FTIR) techniques in the mid-IR (MIR) and near-IR (NIR) spectroscopy to determine n-alkane and long-chain alcohol contents in plant species and faecal samples. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121544.	2.0	5
89	Synthesis and structure elucidation of three series of nitroâ€2â€styrylchromones using 1D and 2D NMR spectroscopy. Magnetic Resonance in Chemistry, 2009, 47, 885-896.	1.1	4
90	Structural Characterization of Nitrated 2′-Hydroxychalcones by Electrospray Ionization Tandem Mass Spectrometry. European Journal of Mass Spectrometry, 2009, 15, 605-616.	0.5	4

#	Article	IF	CITATIONS
91	Sorting out the value of spectroscopic tools to assess the <i>Colletotrichum acutatum</i> impact in olive cultivars with different susceptibilities. Journal of Chemometrics, 2016, 30, 548-558.	0.7	4
92	FTIR chemometrical approach for clonal assessment: Selection of <i>Olea europaea</i> L. optimal phenotypes from cv. Cobrançosa. Journal of Chemometrics, 2017, 31, e2860.	0.7	4
93	The effect of school intervention programs on the body mass index of adolescents: a systematic review with meta-analysis. Health Education Research, 2020, 35, 396-406.	1.0	4
94	ATR-MIR spectroscopy as a tool to assist †Tempranillo' clonal selection process: Geographical origin and year of harvest discrimination and oenological parameters prediction. Food Chemistry, 2020, 325, 126938.	4.2	4
95	Kaolin impacts on hormonal balance, polyphenolic composition and oenological parameters in red grapevine berries during ripening. Journal of Berry Research, 2021, 11, 465-479.	0.7	4
96	Leaf morpho-physiological dynamics in Salvia officinalis L. var. purpurascens. Turkish Journal of Botany, 2017, 41, 134-144.	0.5	3
97	Obesity: Nutrition and Genetics—A Short Narrative Review. Health, 2018, 10, 1779-1788.	0.1	3
98	Genotypic Variation For Carotenoids Content and Chemometric Model Development For Seed Quality Parameters in Wheat. Procedia Environmental Sciences, 2015, 29, 162-163.	1.3	1
99	P2 Nutrition Knowledge of Portuguese Adolescents – a Pilot Evaluation of the Impact of Using an Interactive Multimedia Platform to Provide Nutrition Education. European Journal of Public Health, 2019, 29, .	0.1	1
100	The contribution of drinking culture at comprehensive school to heavy episodic drinking from adolescence to midlife. European Journal of Public Health, 2020, 30, 357-363.	0.1	1
101	Winery By-Products as Source of Bioactive Compounds for Pharmaceutical and Cosmetic Industries. , 0, , .		1
102	The use of macro- and microalgae as functional ingredients in diets for meagre (Argyrosomus regius,) Tj ETQq0 C	0 1 <u>g</u> BT /O	verlock 10 Tf
103	Incorporation of untreated or white-rot fungi treated cowpea stover on performance, digestibility, health and meat quality of growing rabbits. Animal Feed Science and Technology, 2021, 281, 115100.	1.1	1
104	Characterization of the anthropometric profile and physical activity levels of Portuguese adolescents. Biometrics & Biostatistics International Journal, 2019, 8, 184-193.	0.2	1
105	One-Pot Synthesis of 2-(2-Hydroxyaryl)quinolines: Reductive Coupling Reactions of 2′-Hydroxy-2-nitrochalcones ChemInform, 2003, 34, no.	0.1	0
106	Obesity in adolescence-from etiological variability to interventional efficacy in the school context. Biometrics & Biostatistics International Journal, 2020, 9, 22-26.	0.2	0
107	Effect of Foliar Pre-Harvest Calcium Application on the Mineral and Phytochemical Composition of Olive Oils. Proceedings (mdpi), 2020, 70, .	0.2	0
108	New Insights in the Quality of Phaseolus vulgaris L.: Nutritional Value, Functional Properties and Development of Innovative Tools for Their Assessment. Proceedings (mdpi), 2021, 70, 25.	0.2	0

#	Article	IF	CITATIONS
109	Characterization of the phenolic profile of edible flowers as a source of natural antioxidants. , 0, , .		0