

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3994177/publications.pdf Version: 2024-02-01

30 papers	410 citations	840585 11 h-index	⁷⁹⁴⁴⁶⁹ 19 g-index
33 all docs	33 docs citations	33 times ranked	211 citing authors

Γινι Μαλι

#	Article	IF	CITATIONS
1	Long-term outcomes of radiofrequency ablation for unifocal low-risk papillary thyroid microcarcinoma: a large cohort study of 414 patients. European Radiology, 2021, 31, 685-694.	2.3	58
2	Ultrasound-Guided Radiofrequency Ablation Versus Thyroid Lobectomy for Low-Risk Papillary Thyroid Microcarcinoma: A Propensity-Matched Cohort Study of 884 Patients. Thyroid, 2021, 31, 1662-1672.	2.4	49
3	Quality of Life in Papillary Thyroid Microcarcinoma Patients Undergoing Radiofrequency Ablation or Surgery: A Comparative Study. Frontiers in Endocrinology, 2020, 11, 249.	1.5	34
4	Ultrasonographyâ€guided radiofrequency ablation vs. surgery for the treatment of solitary T1bNOMO papillary thyroid carcinoma: A comparative study. Clinical Endocrinology, 2021, 94, 684-691.	1.2	27
5	Efficacy and safety of ultrasonography-guided radiofrequency ablation for the treatment of T1bN0M0 papillary thyroid carcinoma: a retrospective study. International Journal of Hyperthermia, 2020, 37, 392-398.	1.1	26
6	Clinical outcomes of radiofrequency ablation for multifocal papillary thyroid microcarcinoma versus unifocal papillary thyroid microcarcinoma: a propensity-matched cohort study. European Radiology, 2022, 32, 1216-1226.	2.3	26
7	Non-enhanced ultrasound is not a satisfactory modality for measuring necrotic ablated volume after radiofrequency ablation of benign thyroid nodules: a comparison with contrast-enhanced ultrasound. European Radiology, 2021, 31, 3226-3236.	2.3	22
8	Residual vital ratio: predicting regrowth after radiofrequency ablation for benign thyroid nodules. International Journal of Hyperthermia, 2020, 37, 1139-1148.	1.1	21
9	The Clinical Application of Core-Needle Biopsy after Radiofrequency Ablation for Low-risk Papillary Thyroid Microcarcinoma: A Large Cohort of 202 Patients Study. Journal of Cancer, 2020, 11, 5257-5263.	1.2	21
10	The Value of Sonography in Distinguishing Follicular Thyroid Carcinoma from Adenoma. Cancer Management and Research, 2021, Volume 13, 3991-4002.	0.9	16
11	Solid benign thyroid nodules (>10 ml): a retrospective study on the efficacy and safety of sonographically guided ethanol ablation combined with radiofrequency ablation. International Journal of Hyperthermia, 2020, 37, 157-167.	1.1	15
12	The Efficacy and Safety of Radiofrequency Ablation for Bilateral Papillary Thyroid Microcarcinoma. Frontiers in Endocrinology, 2021, 12, 663636.	1.5	15
13	Radiofrequency ablation versus total thyroidectomy in patients with papillary thyroid microcarcinoma located in the isthmus: a retrospective cohort study. International Journal of Hyperthermia, 2021, 38, 708-714.	1.1	14
14	Ultrasonography-guided radiofrequency ablation for the treatment of T2N0M0 papillary thyroid carcinoma: a preliminary study. International Journal of Hyperthermia, 2021, 38, 402-408.	1.1	11
15	Factors associated with health-related quality of life in papillary thyroid microcarcinoma patients undergoing radiofrequency ablation: a cross-sectional prevalence study. International Journal of Hyperthermia, 2020, 37, 1174-1181.	1.1	8
16	Efficacy and safety of ultrasound-guided radiofrequency ablation for low-risk papillary thyroid microcarcinoma in patients aged 55 years or older: a retrospective study. International Journal of Hyperthermia, 2021, 38, 604-610.	1.1	8
17	Roles of contrast-enhanced ultrasonography in identifying volume change of benign thyroid nodule and optical time of secondary radiofrequency ablation. BMC Medical Imaging, 2020, 20, 79.	1.4	7
18	Vital volume increase versus clinical evaluation as the indication of additional radiofrequency ablation for benign thyroid nodule: a single center retrospective study. International Journal of Hyperthermia, 2020, 37, 777-785.	1.1	6

Lin Yan

#	Article	IF	CITATIONS
19	Radiofrequency ablation versus reoperation for benign thyroid nodules that developed after previous thyroid surgery. International Journal of Hyperthermia, 2021, 38, 176-182.	1.1	6
20	Contrast-enhanced ultrasound is a reliable and reproducible assessment of necrotic ablated volume after radiofrequency ablation for benign thyroid nodules: a retrospective study. International Journal of Hyperthermia, 2022, 39, 40-47.	1.1	5
21	Efficacy and safety of radiofrequency ablation for benign thyroid nodules in patients with previous thyroid lobectomy. BMC Medical Imaging, 2021, 21, 47.	1.4	3
22	Inter-observer reliability in ultrasound measurement of benign thyroid nodules in the follow-up of radiofrequency ablation: a retrospective study. International Journal of Hyperthermia, 2020, 37, 1336-1344.	1.1	2
23	Interobserver reproducibility of contrast-enhanced ultrasound in diabetic nephropathy. British Journal of Radiology, 2022, 95, 20210189.	1.0	2
24	A Nomogram to Predict Regrowth After Ultrasound-Guided Radiofrequency Ablation for Benign Thyroid Nodules. Frontiers in Endocrinology, 2021, 12, 774228.	1.5	2
25	Prediction of nodule regrowth after radiofrequency ablation of benign thyroid nodules. International Journal of Hyperthermia, 2021, 38, 11-12.	1.1	1
26	Ultrasound-Guided Thermal Ablation of Bethesda IV Thyroid Nodules: A Pilot Study. Frontiers in Endocrinology, 2021, 12, 674970.	1.5	1
27	Targeting Diagnosis of Highâ€Risk Papillary Thyroid Carcinoma Using Ultrasound Contrast Agent With the <scp> <i>BRAF</i> ^{<i>V600E</i>} </scp> Mutation. Journal of Ultrasound in Medicine, 2022, , .	0.8	1
28	A New Perspective for Predicting the Therapeutic Success of RFA in Solid BTNs: Quantitative Initial RFA Ratio by Contrast-Enhanced Ultrasound. Frontiers in Endocrinology, 0, 13, .	1.5	1
29	The Clinical Application of Radiofrequency Ablation in the Treatment of Primary Low-risk Papillary Thyroid Microcarcinoma. Current Otorhinolaryngology Reports, 2021, 9, 72-78.	0.2	0
30	Response to letter to the editor from Dr. Bernardi regarding suitability of residual vital ratio for prediction of local regrowth following radiofrequency ablation for benign thyroid nodules. International Journal of Hyperthermia, 2021, 38, 189-190.	1.1	0