Riichiro Saito

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3993524/riichiro-saito-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

397 papers

42,648 citations

85 h-index

203 g-index

419 ext. papers

46,066 ext. citations

4.8 avg, IF

7.35 L-index

#	Paper	IF	Citations
397	Complex Raman Tensor in Helicity-Changing Raman Spectra of Black Phosphorus under Circularly Polarized Light <i>Journal of Physical Chemistry Letters</i> , 2022 , 1241-1248	6.4	Ο
396	Enhanced thermoelectric performance by van Hove singularities in the density of states of type-II nodal-line semimetals. <i>Physical Review B</i> , 2022 , 105,	3.3	1
395	Resonance-Enhanced Excitation of Interlayer Vibrations in Atomically Thin Black Phosphorus. <i>Nano Letters</i> , 2021 , 21, 4809-4815	11.5	2
394	The Origin of Quantum Effects in Low-Dimensional Thermoelectric Materials. <i>Advanced Quantum Technologies</i> , 2021 , 4, 2000115	4.3	1
393	Perspective of C60 and Nanotube Research. <i>Materia Japan</i> , 2021 , 60, 147-150	0.1	1
392	Switching Behavior of a Heterostructure Based on Periodically Doped Graphene Nanoribbon. <i>Physical Review Applied</i> , 2021 , 16,	4.3	14
391	Selection rule for Raman spectra of two-dimensional materials using circularly-polarized vortex light. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 17271-17278	3.6	1
390	Raman spectroscopy for carbon nanotube applications. <i>Journal of Applied Physics</i> , 2021 , 129, 021102	2.5	51
389	Step-like conductance of a silicene pseudospin junction. <i>Journal of Physics Condensed Matter</i> , 2020 , 32, 425301	1.8	
388	Scaling law for strain dependence of Raman spectra in transition-metal dichalcogenides. <i>Journal of Raman Spectroscopy</i> , 2020 , 51, 1353-1361	2.3	3
387	Scaling Laws in Synchronization of Metronomic Oscillatory Systems. <i>Journal of the Physical Society of Japan</i> , 2020 , 89, 054002	1.5	
386	Independent degrees of freedom in two-dimensional materials. <i>Physical Review B</i> , 2020 , 101,	3.3	35
385	Confinement Effect in Thermoelectric Properties of TwoDimensional Materials. <i>MRS Advances</i> , 2020 , 5, 469-479	0.7	2
384	Anomalous phonon-mode dependence in polarized Raman spectroscopy of the topological Weyl semimetal TaP. <i>Physical Review B</i> , 2020 , 101,	3.3	3
383	Circular dichroism and Faraday and Kerr rotation in two-dimensional materials with intrinsic Hall conductivities. <i>Physical Review B</i> , 2020 , 101,	3.3	1
382	Anisotropic Fano resonance in the Weyl semimetal candidate LaAlSi. <i>Physical Review B</i> , 2020 , 102,	3.3	6
381	Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. <i>Physical Review Research</i> , 2020 , 2,	3.9	57

(2019-2020)

380	First-principles study of mechanical, electronic and optical properties of Janus structure in transition metal dichalcogenides. <i>Applied Surface Science</i> , 2020 , 526, 146730	6.7	22
379	Surface plasmons in graphene and carbon nanotubes. <i>Carbon</i> , 2020 , 167, 455-474	10.4	16
378	Anionic redox in a-(Mo3S11)n polymer cathode for all-solid-state Li-ion battery. <i>Electrochimica Acta</i> , 2020 , 332, 135218	6.7	6
377	Intersubband Plasmon Observation in Electrochemically Gated Carbon Nanotube Films. <i>ACS Applied Electronic Materials</i> , 2020 , 2, 195-203	4	8
376	Origin of the Flat Band in Heavily Cs-Doped Graphene. ACS Nano, 2020, 14, 1055-1069	16.7	14
375	Characterization of Excitonic Nature in Raman Spectra Using Circularly Polarized Light. <i>ACS Nano</i> , 2020 , 14, 10527-10535	16.7	15
374	Circular dichroism of doped carbon nanotubes. <i>Journal of Applied Physics</i> , 2020 , 128, 164301	2.5	2
373	Temperature-dependent optical constants of monolayer [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]: spectroscopic ellipsometry and first-principles calculations. <i>Scientific Reports</i> , 2020 , 10, 15282	4.9	18
372	Tunable circular dichroism and valley polarization in the modified Haldane model. <i>Physical Review B</i> , 2019 , 99,	3.3	9
371	To Be Positive or Not to Be Positive: That Is the Question of Magnetoresistance. <i>JPSJ News and Comments</i> , 2019 , 16, 03	0.1	
370	Designing high-performance thermoelectrics in two-dimensional tetradymites. <i>Nano Energy</i> , 2019 , 58, 743-749	17.1	15
369	Intersubband plasmon excitations in doped carbon nanotubes. <i>Physical Review B</i> , 2019 , 99,	3.3	15
368	Non-vertical optical transition in near-field enhanced spectroscopy of graphene. <i>Journal of Physics Condensed Matter</i> , 2019 , 31, 265701	1.8	4
367	Planar rotation of electric field induced by edge-plasmon in a graphene nanoribbon. <i>Physical Review B</i> , 2019 , 100,	3.3	3
366	New two-dimensional phase of tin chalcogenides: Candidates for high-performance thermoelectric materials. <i>Physical Review Materials</i> , 2019 , 3,	3.2	26
365	Resonance Raman Spectroscopy of Graphene and Carbon Nanotubes. <i>World Scientific Series on Carbon Nanoscience</i> , 2019 , 113-142	0.5	0
364	Thermoelectric Properties of Carbon Nanotubes. <i>Energies</i> , 2019 , 12, 4561	3.1	22
363	Simultaneous Anionic and Cationic Redox in the Mo3S11 Polymer Electrode of a Sodium-Ion Battery. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 30856-30862	3.8	4

362	Double Resonance Raman Spectroscopy of Two-Dimensional Materials. <i>Springer Series in Materials Science</i> , 2019 , 131-162	0.9	
361	Thermoelectric performance of monolayer InSe improved by convergence of multivalley bands. Journal of Applied Physics, 2019 , 125, 082502	2.5	23
360	Ballistic and Diffusive Thermal Conductivity of Graphene. <i>Physical Review Applied</i> , 2018 , 9,	4.3	12
359	Universal Curve of Optimum Thermoelectric Figures of Merit for Bulk and Low-Dimensional Semiconductors. <i>Physical Review Applied</i> , 2018 , 9,	4.3	12
358	Spontaneous antiferromagnetic order and strain effect on electronic properties of Egraphyne. <i>Carbon</i> , 2018 , 131, 223-228	10.4	13
357	Significant enhancement of light absorption in undoped graphene using dielectric multilayer system. <i>Applied Physics Letters</i> , 2018 , 112, 073101	3.4	16
356	Two-dimensional MoS2 electromechanical actuators. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 07530)63	34
355	Origin of band bending at domain boundaries of MoS2: First-principles study. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 04FP09	1.4	1
354	Energy Band Gap Dependence of Valley Polarization of the Hexagonal Lattice. <i>Journal of the Physical Society of Japan</i> , 2018 , 87, 024710	1.5	9
353	Interplay of valley selection and helicity exchange of light in Raman scattering for graphene and MoS2. <i>Physical Review B</i> , 2018 , 97,	3.3	17
352	Deep-ultraviolet Raman scattering spectroscopy of monolayer WS. <i>Scientific Reports</i> , 2018 , 8, 11398	4.9	9
351	Understanding Interlayer Coupling in TMD-hBN Heterostructure by Raman Spectroscopy. <i>IEEE Transactions on Electron Devices</i> , 2018 , 65, 4059-4067	2.9	18
350	Quantum Description of Surface Plasmon Excitation by Light in Graphene. <i>Physica Status Solidi (B):</i> Basic Research, 2018 , 255, 1800181	1.3	3
349	Perfect Circular Dichroism in the Haldane Model. <i>Journal of the Physical Society of Japan</i> , 2018 , 87, 063	7 <u>0</u> 85	10
348	Atomic Layer Materials with Moir Structure. Vacuum and Surface Science, 2018, 61, 703-703	О	
347	Enhancement of the Electric Field and Diminishment of the Group Velocity of Light in Dielectric Multilayer Systems: A General Description. <i>Physical Review Applied</i> , 2018 , 10,	4.3	3
346	Inversion domain boundaries in MoSe layers RSC Advances, 2018, 8, 33391-33397	3.7	7
345	Resonance Raman Spectrum of Doped Epitaxial Graphene at the Lifshitz Transition. <i>Nano Letters</i> , 2018 , 18, 6045-6056	11.5	7

(2016-2018)

344	Conservation law of angular momentum in helicity-dependent Raman and Rayleigh scattering. <i>Physical Review B</i> , 2018 , 97,	3.3	12
343	Selective coherent phonon-mode generation in single-wall carbon nanotubes. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 055302	1.8	2
342	Sensitive Phonon-Based Probe for Structure Identification of 1TRMoTe. <i>Journal of the American Chemical Society</i> , 2017 , 139, 8396-8399	16.4	30
341	Charge-induced electrochemical actuation of armchair carbon nanotube bundles. <i>Carbon</i> , 2017 , 118, 278-284	10.4	10
340	Electronic and Optical Properties of Single Wall Carbon Nanotubes. <i>Topics in Current Chemistry</i> , 2017 , 375, 7	7.2	12
339	Stability and electronic properties of two-dimensional indium iodide. <i>Physical Review B</i> , 2017 , 95,	3.3	7
338	Giant Terahertz-Wave Absorption by Monolayer Graphene in a Total Internal Reflection Geometry. <i>ACS Photonics</i> , 2017 , 4, 121-126	6.3	24
337	Three-dimensional carbon Archimedean lattices for high-performance electromechanical actuators. <i>Carbon</i> , 2017 , 125, 472-479	10.4	11
336	Hidden symmetries in N-layer dielectric stacks. <i>Journal of Physics Condensed Matter</i> , 2017 , 29, 455303	1.8	5
335	Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene. <i>Brazilian Journal of Physics</i> , 2017 , 47, 589-593	1.2	8
334	Two-dimensional InSe as a potential thermoelectric material. <i>Applied Physics Letters</i> , 2017 , 111, 092107	3.4	69
333	Circular dichroism of single-wall carbon nanotubes. <i>Physical Review B</i> , 2017 , 95,	3.3	18
332	First-principles study on interlayer state in alkali and alkaline earth metal atoms intercalated bilayer graphene. <i>Surface Science</i> , 2017 , 665, 1-9	1.8	14
331	Negative Refraction in Weyl Semimetals. Journal of the Physical Society of Japan, 2017, 86, 104703	1.5	9
330	Quantum interference on electron scattering in graphene by carbon impurities in underlying h-BN. <i>Physical Review B</i> , 2017 , 95,	3.3	5
329	Two-phonon Absorption Spectra in the Layered Honeycomb Compound RuCl3. <i>Journal of the Physical Society of Japan</i> , 2017 , 86, 123709	1.5	8
328	Size effect in thermoelectric power factor of nondegenerate and degenerate low-dimensional semiconductors. <i>Materials Today: Proceedings</i> , 2017 , 4, 12368-12373	1.4	7
327	Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene. <i>Physical Review B</i> , 2016 , 94,	3.3	9

326	In-Plane Optical Anisotropy of Layered Gallium Telluride. ACS Nano, 2016, 10, 8964-72	16.7	140
325	Multiple electronic Raman scatterings in a single metallic carbon nanotube. <i>Physical Review B</i> , 2016 , 93,	3.3	9
324	Raman spectroscopy of transition metal dichalcogenides. <i>Journal of Physics Condensed Matter</i> , 2016 , 28, 353002	1.8	114
323	Angular momentum and topology in semiconducting single-wall carbon nanotubes. <i>Physical Review B</i> , 2016 , 93,	3.3	20
322	Quantum Effects in the Thermoelectric Power Factor of Low-Dimensional Semiconductors. <i>Physical Review Letters</i> , 2016 , 117, 036602	7.4	77
321	Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. <i>Nature Communications</i> , 2016 , 7, 12899	17.4	76
320	Intrinsic strength and failure behaviors of ultra-small single-walled carbon nanotubes. <i>Computational Materials Science</i> , 2016 , 114, 167-171	3.2	13
319	Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. <i>Nano Letters</i> , 2016 , 16, 2260-7	11.5	266
318	Broadband transverse electric surface wave in silicene. <i>Applied Physics Letters</i> , 2016 , 109, 063103	3.4	6
317	Laser energy dependence of valley polarization in transition-metal dichalcogenides. <i>Physical Review B</i> , 2016 , 94,	3.3	16
316	Absorption of THz electromagnetic wave in two mono-layers of graphene. <i>Journal Physics D: Applied Physics</i> , 2016 , 49, 195306	3	8
315	Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations. <i>Nano Energy</i> , 2016 , 25, 203-210	17.1	274
314	Fermi energy dependence of first- and second-order Raman spectra in graphene: Kohn anomaly and quantum interference effect. <i>Physical Review B</i> , 2016 , 94,	3.3	17
313	Anomalous lattice vibrations of monolayer MoS2 probed by ultraviolet Raman scattering. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 14561-8	3.6	31
312	Origin of van Hove singularities in twisted bilayer graphene. <i>Carbon</i> , 2015 , 90, 138-145	10.4	23
311	Fermi energy-dependence of electromagnetic wave absorption in graphene. <i>Applied Physics Express</i> , 2015 , 8, 055102	2.4	17
310	Double resonance Raman modes in monolayer and few-layer MoTe2. <i>Physical Review B</i> , 2015 , 91,	3.3	76
309	Large-Area Synthesis of High-Quality Uniform Few-Layer MoTe2. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11892-5	16.4	248

308	Deep-ultraviolet Raman scattering studies of monolayer graphene thin films. <i>Carbon</i> , 2015 , 81, 807-813	3 10.4	23
307	Diameter dependence of thermoelectric power of semiconducting carbon nanotubes. <i>Physical Review B</i> , 2015 , 92,	3.3	82
306	Photon energy dependence of angle-resolved photoemission spectroscopy in graphene. <i>Physical Review B</i> , 2015 , 92,	3.3	6
305	Valley coupling in finite-length metallic single-wall carbon nanotubes. <i>Physical Review B</i> , 2015 , 91,	3.3	17
304	Ultraviolet Raman spectroscopy of graphene and transition-metal dichalcogenides. <i>Physica Status Solidi (B): Basic Research</i> , 2015 , 252, 2363-2374	1.3	12
303	Origin of coherent G-band phonon spectra in single-wall carbon nanotubes. <i>Physical Review B</i> , 2015 , 91,	3.3	6
302	Optical Properties of Carbon Nanotubes 2014 , 77-98		2
301	Ultrafast generation of fundamental and multiple-order phonon excitations in highly enriched (6,5) single-wall carbon nanotubes. <i>Nano Letters</i> , 2014 , 14, 1426-32	11.5	25
300	Breit-Wigner-Fano line shapes in Raman spectra of graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	43
299	Disorder-induced double resonant Raman process in graphene. <i>Physical Review B</i> , 2014 , 90,	3.3	13
298	Evidence for structural phase transitions and large effective band gaps in quasi-metallic ultra-clean suspended carbon nanotubes. <i>Nano Research</i> , 2013 , 6, 736-744	10	5
297	Dramatic increase in the Raman signal of functional groups on carbon nanotube surfaces. <i>Carbon</i> , 2013 , 56, 235-242	10.4	8
296	Strong magnetophonon resonance induced triple G-mode splitting in graphene on graphite probed by micromagneto Raman spectroscopy. <i>Physical Review B</i> , 2013 , 88,	3.3	16
295	Gate modulated Raman spectroscopy of graphene and carbon nanotubes. <i>Solid State Communications</i> , 2013 , 175-176, 18-34	1.6	30
294	Electronic Raman scattering and the Fano resonance in metallic carbon nanotubes. <i>Physical Review B</i> , 2013 , 88,	3.3	24
293	Coherent phonons in carbon nanotubes and graphene. <i>Chemical Physics</i> , 2013 , 413, 55-80	2.3	23
292	Direct real-time monitoring of stage transitions in graphite intercalation compounds. <i>ACS Nano</i> , 2013 , 7, 2773-80	16.7	121
291	Fano resonance in Raman scattering of graphene. <i>Carbon</i> , 2013 , 61, 373-378	10.4	29

2 90	Theory of coherent phonons in carbon nanotubes and graphene nanoribbons. <i>Journal of Physics Condensed Matter</i> , 2013 , 25, 144201	1.8	24
289	Excitonic effects on coherent phonon dynamics in single-wall carbon nanotubes. <i>Physical Review B</i> , 2013 , 88,	3.3	2
288	Using gate-modulated Raman scattering and electron-phonon interactions to probe single-layer graphene: A different approach to assign phonon combination modes. <i>Physical Review B</i> , 2012 , 86,	3.3	17
287	Effect of domain boundaries on the Raman spectra of mechanically strained graphene. <i>ACS Nano</i> , 2012 , 6, 10229-38	16.7	65
286	Phonon self-energy corrections to nonzero wave-vector phonon modes in single-layer graphene. <i>Physical Review Letters</i> , 2012 , 109, 046801	7.4	33
285	Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. <i>Nano Letters</i> , 2012 , 12, 5539-44	11.5	134
284	Using the GRRaman cross-section to understand the phonon dynamics in bilayer graphene systems. <i>Nano Letters</i> , 2012 , 12, 2883-7	11.5	13
283	Effect of 13C isotope doping on the optical phonon modes in graphene: Localization and Raman spectroscopy. <i>Physical Review B</i> , 2012 , 85,	3.3	27
282	Raman spectroscopy of boron-doped single-layer graphene. ACS Nano, 2012, 6, 6293-300	16.7	209
281	Reversible formation of ammonium persulfate/sulfuric acid graphite intercalation compounds and their peculiar Raman spectra. <i>ACS Nano</i> , 2012 , 6, 7842-9	16.7	75
280	Zone folding effect in Raman G-band intensity of twisted bilayer graphene. <i>Physical Review B</i> , 2012 , 86,	3.3	67
279	Luminescence properties of individual empty and water-filled single-walled carbon nanotubes. <i>ACS Nano</i> , 2012 , 6, 2649-55	16.7	63
278	Polarization dependence of x-ray absorption spectra in graphene. <i>Physical Review B</i> , 2012 , 85,	3.3	13
277	Asymmetric velocities of Dirac particles and Vernier spectrum in metallic single-wall carbon nanotubes. <i>Physical Review B</i> , 2012 , 85,	3.3	10
276	Coherent radial-breathing-like phonons in graphene nanoribbons. <i>Physical Review B</i> , 2012 , 85,	3.3	14
275	Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene. <i>Scientific Reports</i> , 2012 , 2, 1017	4.9	16
274	Raman characterization of ABA- and ABC-stacked trilayer graphene. ACS Nano, 2011, 5, 8760-8	16.7	153
273	Raman Spectroscopy of Graphene Edges 2011 , 91-103		3

(2011-2011)

272	Observation of electronic Raman scattering in metallic carbon nanotubes. <i>Physical Review Letters</i> , 2011 , 107, 157401	7.4	41
271	Raman spectra of out-of-plane phonons in bilayer graphene. <i>Physical Review B</i> , 2011 , 84,	3.3	53
270	Tunneling time of an optical pulse in a photonic bandgap. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2011 , 28, 2537	1.7	6
269	Second-order overtone and combination Raman modes of graphene layers in the range of 1690-2150 cm(-1). <i>ACS Nano</i> , 2011 , 5, 1600-5	16.7	120
268	2011,		359
267	First Principles Calculations of the Electronic Structure of ZrN Allotropes. <i>Journal of the Physical Society of Japan</i> , 2011 , 80, 114707	1.5	1
266	Raman spectroscopy of graphene and carbon nanotubes. <i>Advances in Physics</i> , 2011 , 60, 413-550	18.4	634
265	Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp2 Carbons. <i>Nanoscience and Technology</i> , 2011 , 15-55	0.6	3
264	Chirality dependence of coherent phonon amplitudes in single-wall carbon nanotubes. <i>Physical Review B</i> , 2011 , 84,	3.3	9
263	The sp2 Nanocarbons: Prototypes for Nanoscience and Nanotechnology 2011 , 1-15		2
262	Theory of Excitons in Carbon Nanotubes 2011 , 223-250		
261	Tight-Binding Method for Calculating Raman Spectra 2011 , 251-276		
260	Dispersive G?-Band and Higher-Order Processes: The Double Resonance Process 2011 , 277-298		3
259	Disorder Effects in the Raman Spectra of sp2 Carbons 2011 , 299-325		1
258	Summary of Raman Spectroscopy on sp2 Nanocarbons 2011 , 327-334		3
257	Electrons in sp2 Nanocarbons 2011 , 17-51		1
256	Vibrations in sp2 Nanocarbons 2011 , 53-72		
255	Raman Spectroscopy: From Graphite to sp2 Nanocarbons 2011 , 73-101		1

254	Quantum Description of Raman Scattering 2011 , 103-119		1
253	Symmetry Aspects and Selection Rules: Group Theory 2011 , 121-158		
252	The G-band and Time-Independent Perturbations 2011 , 159-177		1
251	The G-Band and the Time-Dependent Perturbations 2011 , 179-198		2
250	Resonance Raman Scattering: Experimental Observations of the Radial Breathing Mode 2011 , 199-222		2
249	Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnOIIdS heterostructures. <i>Energy and Environmental Science</i> , 2011 , 4, 3976	35.4	133
248	Resonant Raman spectroscopy on enriched 13C carbon nanotubes. <i>Carbon</i> , 2011 , 49, 4719-4723	10.4	24
247	Fermi level dependent optical transition energy in metallic single-walled carbon nanotubes. <i>Carbon</i> , 2011 , 49, 4774-4780	10.4	12
246	Vibrational and NMR properties of polyynes. <i>Carbon</i> , 2011 , 49, 3340-3345	10.4	10
245	D band Raman intensity calculation in armchair edged graphene nanoribbons. <i>Physical Review B</i> , 2011 , 83,	3.3	13
244	Excitonic Effects on Raman Intensity of Single Wall Carbon Nanotubes. <i>E-Journal of Surface Science and Nanotechnology</i> , 2010 , 8, 358-361	0.7	
243	Confinement of Excitons for the Lowest Optical Transition Energies of Single Wall Carbon Nanotubes. <i>E-Journal of Surface Science and Nanotechnology</i> , 2010 , 8, 367-371	0.7	
242	Torsional instability of chiral carbon nanotubes. <i>Physical Review B</i> , 2010 , 81,	3.3	31
241	Calibrating the single-wall carbon nanotube resonance Raman intensity by high resolution transmission electron microscopy for a spectroscopy-based diameter distribution determination. <i>Applied Physics Letters</i> , 2010 , 96, 051910	3.4	18
240	Soliton trap in strained graphene nanoribbons. New Journal of Physics, 2010, 12, 103015	2.9	15
239	Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. <i>ACS Nano</i> , 2010 , 4, 1060-6	16.7	24
238	Raman spectra of graphene ribbons. <i>Journal of Physics Condensed Matter</i> , 2010 , 22, 334203	1.8	35
237	Triangle defect states of hexagonal boron nitride atomic layer: Density functional theory calculations. <i>Physical Review B</i> , 2010 , 81,	3.3	56

236	Perspectives on carbon nanotubes and graphene Raman spectroscopy. <i>Nano Letters</i> , 2010 , 10, 751-8	11.5	2389
235	The fermi level dependent electronic properties of the smallest (2,2) carbon nanotube. <i>Nano Letters</i> , 2010 , 10, 3290-6	11.5	8
234	Characterizing Graphene, Graphite, and Carbon Nanotubes by Raman Spectroscopy. <i>Annual Review of Condensed Matter Physics</i> , 2010 , 1, 89-108	19.7	454
233	Dielectric constant model for environmental effects on the exciton energies of single wall carbon nanotubes. <i>Applied Physics Letters</i> , 2010 , 97, 091905	3.4	70
232	Synthesis of bandgap-controlled semiconducting single-walled carbon nanotubes. <i>ACS Nano</i> , 2010 , 4, 1012-8	16.7	49
231	Defect characterization in graphene and carbon nanotubes using Raman spectroscopy. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2010 , 368, 5355-77	3	472
230	Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. <i>Physical Review B</i> , 2010 , 81,	3.3	65
229	Identifying the Orientation of Edge of Graphene Using G Band Raman Spectra. <i>Journal of the Physical Society of Japan</i> , 2010 , 79, 044603	1.5	39
228	Resonance Raman spectroscopy of the radial breathing modes in carbon nanotubes. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2010 , 42, 1251-1261	3	95
227	Kohn anomaly in Raman spectroscopy of single wall carbon nanotubes. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2010 , 42, 2005-2015	3	28
226	Excitonic effects on radial breathing mode intensity of single wall carbon nanotubes. <i>Chemical Physics Letters</i> , 2010 , 497, 94-98	2.5	24
225	Chirality dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2010 , 247, 2847-2850	1.3	1
224	Kohn anomalies in graphene nanoribbons. <i>Physical Review B</i> , 2009 , 80,	3.3	42
223	Strong and stable photoluminescence from the semiconducting inner tubes within double walled carbon nanotubes. <i>Applied Physics Letters</i> , 2009 , 94, 083106	3.4	30
222	Resonant coherent phonon spectroscopy of single-walled carbon nanotubes. <i>Physical Review B</i> , 2009 , 79,	3.3	35
221	Diameter dependence of the dielectric constant for the excitonic transition energy of single-wall carbon nanotubes. <i>Physical Review Letters</i> , 2009 , 103, 146802	7.4	47
220	Spin Drbit Interaction in Single Wall Carbon Nanotubes: Symmetry Adapted Tight-Binding Calculation and Effective Model Analysis. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 074707	1.5	99
219	Edge States of Zigzag Boron Nitride Nanoribbons. <i>Journal of the Physical Society of Japan</i> , 2009 , 78, 074	7.13	26

218	Exciton energy calculations for single wall carbon nanotubes. <i>Physica Status Solidi (B): Basic Research</i> , 2009 , 246, 2581-2585	1.3	4
217	A possible buckybowl-like structure of zeolite templated carbon. <i>Carbon</i> , 2009 , 47, 1220-1230	10.4	203
216	G? band Raman spectra of single, double and triple layer graphene. Carbon, 2009, 47, 1303-1310	10.4	288
215	Surface and interference coenhanced Raman scattering of graphene. ACS Nano, 2009, 3, 933-9	16.7	81
214	Fermi energy dependence of the G-band resonance Raman spectra of single-wall carbon nanotubes. <i>Physical Review B</i> , 2009 , 80,	3.3	44
213	Electrochemical charging of individual single-walled carbon nanotubes. ACS Nano, 2009, 3, 2320-8	16.7	49
212	Softening of the radial breathing mode in metallic carbon nanotubes. <i>Physical Review Letters</i> , 2009 , 102, 126804	7.4	44
211	Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. <i>Physical Review B</i> , 2008 , 78,	3.3	209
210	Chirality-dependent frequency shift of radial breathing mode in metallic carbon nanotubes. <i>Physical Review B</i> , 2008 , 78,	3.3	32
209	Coherent phonon anisotropy in aligned single-walled carbon nanotubes. <i>Nano Letters</i> , 2008 , 8, 3102-8	11.5	50
208	Pseudospin and Deformation-Induced Gauge Field in Graphene. <i>Progress of Theoretical Physics Supplement</i> , 2008 , 176, 253-278		87
207	Magnetism as a Mass Term of the Edge States in Graphene. <i>Journal of the Physical Society of Japan</i> , 2008 , 77, 054703	1.5	18
206	Relation between peak structures of loss functions of single double-walled carbon nanotubes and interband transition energies. <i>Journal of Electron Microscopy</i> , 2008 , 57, 129-32		4
205	Curvature-induced optical phonon frequency shift in metallic carbon nanotubes. <i>Physical Review B</i> , 2008 , 77,	3.3	52
204	Aharanov-Bohm effect for the edge states of zigzag carbon nanotubes. <i>Physical Review B</i> , 2008 , 77,	3.3	6
203	Resonant Raman scattering of the smallest single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2008 , 101, 047402	7.4	50
202	Raman spectroscopy of double-walled carbon nanotubes treated with H2SO4. <i>Physical Review B</i> , 2007 , 76,	3.3	34
201	Discontinuity in the family pattern of single-wall carbon nanotubes. <i>Physical Review B</i> , 2007 , 76,	3.3	71

(2006-2007)

200	Local density of states at zigzag edges of carbon nanotubes and graphene. <i>Physical Review B</i> , 2007 , 75,	3.3	28
199	Excitonic States and Resonance Raman Spectroscopy of Single-Wall Carbon Nanotubes. <i>Topics in Applied Physics</i> , 2007 , 251-286	0.5	8
198	Exciton-photon, exciton-phonon matrix elements, and resonant Raman intensity of single-wall carbon nanotubes. <i>Physical Review B</i> , 2007 , 75,	3.3	81
197	Charge transport in carbon nanotubes: quantum effects of electron-phonon coupling. <i>Journal of Physics Condensed Matter</i> , 2007 , 19, 183203	1.8	28
196	Chirality dependence of many body effects of single wall carbon nanotubes. <i>Vibrational Spectroscopy</i> , 2007 , 45, 89-94	2.1	13
195	Dependence of exciton transition energy of single-walled carbon nanotubes on surrounding dielectric materials. <i>Chemical Physics Letters</i> , 2007 , 442, 394-399	2.5	93
194	Finite length effects in DNA-wrapped carbon nanotubes. <i>Chemical Physics Letters</i> , 2007 , 443, 328-332	2.5	7
193	Raman scattering from one-dimensional carbon systems. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2007 , 37, 81-87	3	10
192	Exciton photophysics of carbon nanotubes. Annual Review of Physical Chemistry, 2007, 58, 719-47	15.7	177
191	Studying disorder in graphite-based systems by Raman spectroscopy. <i>Physical Chemistry Chemical Physics</i> , 2007 , 9, 1276-91	3.6	3172
190	Electron-phonon coupling mechanism in two-dimensional graphite and single-wall carbon nanotubes. <i>Physical Review B</i> , 2007 , 75,	3.3	54
189	Theory of Superconductivity of Carbon Nanotubes and Graphene. <i>Journal of the Physical Society of Japan</i> , 2007 , 76, 033702	1.5	48
188	Length characterization of DNA-wrapped carbon nanotubes using Raman spectroscopy. <i>Applied Physics Letters</i> , 2007 , 90, 131109	3.4	38
187	Resonance Raman study of polyynes encapsulated in single-wall carbon nanotubes. <i>Physical Review B</i> , 2007 , 76,	3.3	43
186	Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model. <i>Physical Review B</i> , 2007 , 75,	3.3	197
185	A Raman probe for selective wrapping of single-walled carbon nanotubes by DNA. <i>Nanotechnology</i> , 2007 , 18, 405706	3.4	26
184	Dependence of Raman spectra G? band intensity on metallicity of single-wall carbon nanotubes. <i>Physical Review B</i> , 2007 , 76,	3.3	62
183	High energy-resolution electron energy-loss spectroscopy study of the electric structure of double-walled carbon nanotubes. <i>Journal of Electron Microscopy</i> , 2006 , 55, 137-42		10

182	Gauge Field for Edge State in Graphene. Journal of the Physical Society of Japan, 2006, 75, 074713	1.5	114
181	Resonance Raman scattering studies in Br2-adsorbed double-wall carbon nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	44
180	Carbon nanotube population analysis from Raman and photoluminescence intensities. <i>Applied Physics Letters</i> , 2006 , 88, 023109	3.4	46
179	Trigonal Anisotropy in Graphite and Carbon Nanotubes. <i>Molecular Crystals and Liquid Crystals</i> , 2006 , 455, 287-294	0.5	1
178	Raman resonance window of single-wall carbon nanotubes. <i>Physical Review B</i> , 2006 , 74,	3.3	29
177	Stabilization mechanism of edge states in graphene. <i>Applied Physics Letters</i> , 2006 , 88, 113110	3.4	127
176	Stimulated Raman scattering from individual single-wall carbon nanotubes. <i>Applied Physics Letters</i> , 2006 , 88, 241101	3.4	17
175	Raman characterization of electronic transition energies of metallic single-wall carbon nanotubes. <i>Physical Review B</i> , 2006 , 74,	3.3	32
174	Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes. <i>Physical Review B</i> , 2006 , 73,	3.3	73
173	Nanotube coalescence-inducing mode: a novel vibrational mode in carbon systems. <i>Small</i> , 2006 , 2, 1031	-6 1	66
172	Mesoscopic transport in carbon nanotubes: novel features. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2006 , 203, 1100-1104	1.6	
171	Photoluminescence intensity of single-wall carbon nanotubes. <i>Carbon</i> , 2006 , 44, 873-879	10.4	136
170	Photoluminescence and population analysis of single-walled carbon nanotubes produced by CVD and pulsed-laser vaporization methods. <i>Chemical Physics Letters</i> , 2006 , 420, 286-290	2.5	33
169	D-band Raman intensity of graphitic materials as a function of laser energy and crystallite size. <i>Chemical Physics Letters</i> , 2006 , 427, 117-121	2.5	187
168	Quantum Phenomena of Carbon Nanotubes. <i>Hyomen Kagaku</i> , 2006 , 27, 239-244		
167	Local Energy Gap in Deformed Carbon Nanotubes 2005 , 113, 463-480		58
166	Dual Raman features of double coaxial carbon nanotubes with N-doped and B-doped multiwalls. <i>Nano Letters</i> , 2005 , 5, 2465-9	11.5	203
165	Quantifying carbon-nanotube species with resonance Raman scattering. <i>Physical Review B</i> , 2005 , 72,	3.3	145

(2005-2005)

164	Resonance Raman spectroscopy (n,m)-dependent effects in small-diameter single-wall carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	208
163	Steplike dispersion of the intermediate-frequency Raman modes in semiconducting and metallic carbon nanotubes. <i>Physical Review B</i> , 2005 , 72,	3.3	49
162	Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2005 , 127, 10287-90	16.4	284
161	Recent advances in carbon nanotube photophysics. <i>Physica E: Low-Dimensional Systems and Nanostructures</i> , 2005 , 29, 443-446	3	12
160	Raman spectroscopy of carbon nanotubes. <i>Physics Reports</i> , 2005 , 409, 47-99	27.7	3238
159	Origin of the 2450cm Raman bands in HOPG, single-wall and double-wall carbon nanotubes. <i>Carbon</i> , 2005 , 43, 1049-1054	10.4	101
158	Infrared-active vibrational modes of single-walled carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 95, 157402	7.4	92
157	ErbiumBiliconBxide nano-crystallite waveguide formation based on nano-porous silicon. <i>Optical Materials</i> , 2005 , 27, 880-883	3.3	6
156	Semiconducting Carbon Nanotubes. AIP Conference Proceedings, 2005,	O	6
155	Phonon-assisted exciton relaxation dynamics for a (6,5)-enriched DNA-wrapped single-walled carbon nanotube sample. <i>Physical Review B</i> , 2005 , 72,	3.3	27
154	Intensity of the resonance Raman excitation spectra of single-wall carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	73
153	Strain-induced interference effects on the resonance Raman cross section of carbon nanotubes. <i>Physical Review Letters</i> , 2005 , 95, 217403	7.4	58
152	Phonon-assisted excitonic recombination channels observed in DNA-wrapped carbon nanotubes using photoluminescence spectroscopy. <i>Physical Review Letters</i> , 2005 , 94, 127402	7.4	104
151	Controlling edge states of zigzag carbon nanotubes by the Aharonov-Bohm flux. <i>Physical Review B</i> , 2005 , 71,	3.3	28
150	Electron-phonon matrix elements in single-wall carbon nanotubes. <i>Physical Review B</i> , 2005 , 72,	3.3	138
149	Conductance and coherence lengths in disordered carbon nanotubes: Role of lattice defects and phonon vibrations. <i>Physical Review B</i> , 2005 , 72,	3.3	13
148	Photoexcited electron relaxation processes in single-wall carbon nanotubes. <i>Physical Review B</i> , 2005 , 71,	3.3	53
147	Cutting lines near the Fermi energy of single-wall carbon nanotubes. <i>Physical Review B</i> , 2005 , 72,	3.3	46

146	Quantum dephasing in carbon nanotubes due to electron-phonon coupling. <i>Physical Review Letters</i> , 2005 , 95, 076803	7.4	72
145	Raman on Carbon Nanotubes Using a Tunable Laser and Comparison with Photoluminescence. <i>AIP Conference Proceedings</i> , 2004 ,	Ο	2
144	Family behavior of the optical transition energies in single-wall carbon nanotubes of smaller diameters. <i>Applied Physics Letters</i> , 2004 , 85, 5703-5705	3.4	169
143	Anisotropy of the Raman spectra of nanographite ribbons. <i>Physical Review Letters</i> , 2004 , 93, 047403	7.4	177
142	Single- and double-resonance Raman G-band processes in carbon nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	45
141	Fractional flux periodicity in doped carbon nanotubes. <i>Physical Review B</i> , 2004 , 70,	3.3	4
140	Fractional Flux Periodicity in Tori Composed of Square Lattice 2004 , 111, 763-780		3
139	Resonance Raman Spectroscopy to Study and Characterize Defects on Carbon Nanotubes and other Nano-Graphite Systems. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 858, 1		
138	Probing the Phonon-Assisted Relaxation Processes in DNA-wrapped Carbon Nanotubes Using Photoluminescence Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 858, 52		
137	Optical absorption of graphite and single-wall carbon nanotubes. <i>Applied Physics A: Materials Science and Processing</i> , 2004 , 78, 1099-1105	2.6	43
136	Aharonov B ohm effect in higher genus materials. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 321, 369-375	2.3	11
135	Fractional flux periodicity of a twisted planar square lattice. <i>Physics Letters, Section A: General, Atomic and Solid State Physics</i> , 2004 , 329, 148-154	2.3	3
134	Resonant Raman spectra of carbon nanotube bundles observed by perpendicularly polarized light. <i>Chemical Physics Letters</i> , 2004 , 387, 301-306	2.5	24
133	Electronphonon interaction and relaxation time in graphite. Chemical Physics Letters, 2004, 392, 383-38	392.5	59
132	Optical characterization of DNA-wrapped carbon nanotube hybrids. <i>Chemical Physics Letters</i> , 2004 , 397, 296-301	2.5	122
131	Advances in single nanotube spectroscopy: Raman spectra from cross-polarized light and chirality dependence of Raman frequencies. <i>Carbon</i> , 2004 , 42, 1067-1069	10.4	15
130	Optical absorption matrix elements in single-wall carbon nanotubes. <i>Carbon</i> , 2004 , 42, 3169-3176	10.4	94
129	Determination of nanotubes properties by Raman spectroscopy. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2004 , 362, 2311-36	3	113

(2003-2004)

128	Interband optical transitions in left- and right-handed single-wall carbon nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	70
127	One-dimensional character of combination modes in the resonance Raman scattering of carbon nanotubes. <i>Physical Review Letters</i> , 2004 , 93, 087401	7.4	55
126	Carbon Nanotube Photophysics. <i>MRS Bulletin</i> , 2004 , 29, 276-280	3.2	35
125	Stokes and anti-Stokes Raman spectra of small-diameter isolated carbon nanotubes. <i>Physical Review B</i> , 2004 , 69,	3.3	91
124	Re-parameterization Invariance in Fractional Flux Periodicity. <i>Journal of the Physical Society of Japan</i> , 2004 , 73, 3231-3234	1.5	1
123	Science and applications of single-nanotube Raman spectroscopy. <i>Journal of Nanoscience and Nanotechnology</i> , 2003 , 3, 19-37	1.3	33
122	The concept of cutting lines in carbon nanotube science. <i>Journal of Nanoscience and Nanotechnology</i> , 2003 , 3, 431-58	1.3	106
121	Hybrid Orbital Control in Carbon Alloys 2003 , 15-40		
12 0	Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall carbon nanotubes. <i>Physical Review B</i> , 2003 , 67,	3.3	84
119	Phonon trigonal warping effect in graphite and carbon nanotubes. <i>Physical Review Letters</i> , 2003 , 90, 027403	7.4	52
118	Resonance Raman spectra of carbon nanotubes by cross-polarized light. <i>Physical Review Letters</i> , 2003 , 90, 107403	7.4	112
117	Optical characterization of Er-implanted ZnO films formed by solgel method. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2003 , 206, 287-290	1.2	26
116	Nanowires and nanotubes. <i>Materials Science and Engineering C</i> , 2003 , 23, 129-140	8.3	167
115	Ge dot formation on Si by MOVPE using tetramethylgermanium (Ge(CH3)4). <i>Physica Status Solidi C:</i> Current Topics in Solid State Physics, 2003 , 1113-1116		
114	Characterizing carbon nanotube samples with resonance Raman scattering. <i>New Journal of Physics</i> , 2003 , 5, 139-139	2.9	788
113	Double resonance Raman spectroscopy of single-wall carbon nanotubes. <i>New Journal of Physics</i> , 2003 , 5, 157-157	2.9	205
112	Raman spectra of lithium doped single-walled 0.4 nm carbon nanotubes. <i>Physical Review B</i> , 2003 , 67,	3.3	20
111	Raman spectroscopy for probing chemically/physically induced phenomena in carbon nanotubes. <i>Nanotechnology</i> , 2003 , 14, 1130-1139	3.4	131

110	Suppression of Auger deexcitation and temperature quenching of the Er-related 1.54 fh emission with an ultrathin oxide interlayer in an Er/SiO2/Si structure. <i>Journal of Applied Physics</i> , 2003 , 93, 2595-2	6 0 7	25
109	Inhomogeneous optical absorption around the K point in graphite and carbon nanotubes. <i>Physical Review B</i> , 2003 , 67,	3.3	239
108	Introduction to Electronic Structure Calculation of Nano-Carbon. <i>Tanso</i> , 2003 , 2003, 67-72	0.1	
107	Resonance Raman scattering: nondestructive and noninvasive technique for structural and electronic characterization of isolated single-wall carbon nanotubes. <i>Brazilian Journal of Physics</i> , 2002 , 32, 921-924	1.2	4
106	Raman spectroscopy on one isolated carbon nanotube. <i>Physica B: Condensed Matter</i> , 2002 , 323, 15-20	2.8	61
105	Characteristic Raman spectra of multiwalled carbon nanotubes. <i>Physica B: Condensed Matter</i> , 2002 , 323, 265-266	2.8	42
104	Dispersive Raman spectra observed in graphite and single wall carbon nanotubes. <i>Physica B: Condensed Matter</i> , 2002 , 323, 100-106	2.8	61
103	Raman spectroscopy on isolated single wall carbon nanotubes. <i>Carbon</i> , 2002 , 40, 2043-2061	10.4	1166
102	Raman studies on 0.4 nm diameter single wall carbon nanotubes. <i>Chemical Physics Letters</i> , 2002 , 351, 27-34	2.5	34
101	Probing the electronic trigonal warping effect in individual single-wall carbon nanotubes using phonon spectra. <i>Chemical Physics Letters</i> , 2002 , 354, 62-68	2.5	46
100	Radial breathing modes of multiwalled carbon nanotubes. <i>Chemical Physics Letters</i> , 2002 , 361, 169-174	2.5	99
99	G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. <i>Physical Review B</i> , 2002 , 65,	3.3	389
98	Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. <i>Physical Review B</i> , 2002 , 65,	3.3	91
97	Anomalous two-peak G?-band Raman effect in one isolated single-wall carbon nanotube. <i>Physical Review B</i> , 2002 , 65,	3.3	71
96	Single nanotube Raman spectroscopy. Accounts of Chemical Research, 2002, 35, 1070-8	24.3	216
95	Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. <i>Physical Review B</i> , 2002 , 66,	3.3	108
94	Probing phonon dispersion relations of graphite by double resonance Raman scattering. <i>Physical Review Letters</i> , 2002 , 88, 027401	7.4	438
93	Polarized resonant Raman study of isolated single-wall carbon nanotubes: Symmetry selection rules, dipolar and multipolar antenna effects. <i>Physical Review B</i> , 2002 , 65,	3.3	113

(2001-2002)

92	Double resonance raman spectrain disordered graphite and singlewall carbon nanotubes. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 387, 63-72	0.5	2
91	First and Second-Order Resonance Raman Process in Graphite and Single Wall Carbon Nanotubes. Japanese Journal of Applied Physics, 2002 , 41, 4878-4882	1.4	20
90	Raman spectroscopy of nanoscale carbons and of an isolated carbon nanotube. <i>Molecular Crystals and Liquid Crystals</i> , 2002 , 387, 21-29	0.5	10
89	Characterization of nanographite and carbon nanotubes by polarization dependent optical spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 737, 521		
88	Anisotropy in the Phonon Dispersion Relations of Graphite and Carbon Nanotubes Measured by Raman Spectroscopy. <i>Materials Research Society Symposia Proceedings</i> , 2002 , 737, 652		
87	Stokes and anti-Stokes double resonance Raman scattering in two-dimensional graphite. <i>Physical Review B</i> , 2002 , 66,	3.3	137
86	Multiple splitting of G-band modes from individual multiwalled carbon nanotubes. <i>Applied Physics Letters</i> , 2002 , 81, 2550-2552	3.4	73
85	Linewidth of the Raman features of individual single-wall carbon nanotubes. <i>Physical Review B</i> , 2002 , 66,	3.3	172
84	Anomalous potential barrier of double-wall carbon nanotube. Chemical Physics Letters, 2001, 348, 187-	1 9:3 5	362
83	Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes. <i>Physical Review B</i> , 2001 , 64,	3.3	101
82	Effect of quantized electronic states on the dispersive Raman features in individual single-wall carbon nanotubes. <i>Physical Review B</i> , 2001 , 65,	3.3	43
81	Study of the radiative and nonradiative processes of rare earth implanted semiconductors at low temperatures. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2001 , 175-177, 286-291	1.2	
80	Electronic transition energy Eii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio. <i>Physical Review B</i> , 2001 , 63,	3.3	78
79	Polarization effects in surface-enhanced resonant Raman scattering of single-wall carbon nanotubes on colloidal silver clusters. <i>Physical Review B</i> , 2001 , 63,	3.3	23
78	Theoretical analysis of the diffusive ion in biased plasma enhanced diamond chemical vapor deposition. <i>Journal of Applied Physics</i> , 2001 , 90, 2559-2564	2.5	4
77	Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering. <i>Physical Review B</i> , 2001 , 63,	3.3	128
76	Magnetoresistance of carbon nanotubes: from molecular to mesoscopic fingerprints. <i>Physical Review Letters</i> , 2001 , 87, 246803	7.4	80
75	Origin of the Breit-Wigner-Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. <i>Physical Review B</i> , 2001 , 63,	3.3	441

74	Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. <i>Physical Review Letters</i> , 2001 , 86, 1118-21	7.4	1247
73	Chirality-dependent G-band Raman intensity of carbon nanotubes. <i>Physical Review B</i> , 2001 , 64,	3.3	110
72	Optical Properties and Raman Spectroscopy of Carbon Nanotubes 2001 , 213-247		43
71	Polarized absorption spectra of single-walled 4 A carbon nanotubes aligned in channels of an AlPO(4)-5 single crystal. <i>Physical Review Letters</i> , 2001 , 87, 127401	7.4	263
70	Raman Spectra from One Carbon Nanotube. <i>Materials Research Society Symposia Proceedings</i> , 2001 , 706, 1		
69	Site of the Er3+ optical centers of the 1.54th room-temperature emission in Er-doped porous silicon and the excitation mechanism. <i>Journal of Luminescence</i> , 2000 , 87-89, 319-322	3.8	7
68	Auger de-excitation of the 1.54 h emission of Er- and O-implanted silicon. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2000 , 161-163, 1080-1084	1.2	6
67	Trigonal warping effect of carbon nanotubes. <i>Physical Review B</i> , 2000 , 61, 2981-2990	3.3	552
66	Aharonov-Bohm spectral features and coherence lengths in carbon nanotubes. <i>Physical Review B</i> , 2000 , 62, 16092-16099	3.3	129
65	Chemical Reaction of Intercalated Atoms at the Edge of Nano-Graphene Cluster. <i>Molecular Crystals and Liquid Crystals</i> , 2000 , 340, 71-76		4
65 64		7.4	196
	and Liquid Crystals, 2000, 340, 71-76 Polarized raman study of single-wall semiconducting carbon nanotubes. <i>Physical Review Letters</i> ,		
64	and Liquid Crystals, 2000, 340, 71-76 Polarized raman study of single-wall semiconducting carbon nanotubes. <i>Physical Review Letters</i> , 2000, 85, 2617-20		196
64	and Liquid Crystals, 2000, 340, 71-76 Polarized raman study of single-wall semiconducting carbon nanotubes. <i>Physical Review Letters</i> , 2000, 85, 2617-20 Polarized raman study of aligned multiwalled carbon nanotubes. <i>Physical Review Letters</i> , 2000, 84, 182 New Application of Carbon Nanotubes. Nano-technology of Carbon Nanotubes <i>Hyomen Kagaku</i> ,		196 310
6 ₄ 6 ₃ 6 ₂	Polarized raman study of single-wall semiconducting carbon nanotubes. <i>Physical Review Letters</i> , 2000 , 85, 2617-20 Polarized raman study of aligned multiwalled carbon nanotubes. <i>Physical Review Letters</i> , 2000 , 84, 182 New Application of Carbon Nanotubes. Nano-technology of Carbon Nanotubes <i>Hyomen Kagaku</i> , 2000 , 21, 528-533 Electronic structure of fluorine doped graphite nanoclusters. <i>Journal of Physics and Chemistry of</i>	0 -3 .4	196 310
64 63 62 61	Polarized raman study of single-wall semiconducting carbon nanotubes. <i>Physical Review Letters</i> , 2000 , 85, 2617-20 Polarized raman study of aligned multiwalled carbon nanotubes. <i>Physical Review Letters</i> , 2000 , 84, 182 New Application of Carbon Nanotubes. Nano-technology of Carbon Nanotubes <i>Hyomen Kagaku</i> , 2000 , 21, 528-533 Electronic structure of fluorine doped graphite nanoclusters. <i>Journal of Physics and Chemistry of Solids</i> , 1999 , 60, 715-721 Conductance quantization in carbon nanotubes: neutrionos on cylinder surface. <i>Microelectronic</i>	0-3 .4 3.9	196 310 1 40
64 63 62 61 60	Polarized raman study of single-wall semiconducting carbon nanotubes. <i>Physical Review Letters</i> , 2000, 85, 2617-20 Polarized raman study of aligned multiwalled carbon nanotubes. <i>Physical Review Letters</i> , 2000, 84, 182 New Application of Carbon Nanotubes. Nano-technology of Carbon Nanotubes <i>Hyomen Kagaku</i> , 2000, 21, 528-533 Electronic structure of fluorine doped graphite nanoclusters. <i>Journal of Physics and Chemistry of Solids</i> , 1999, 60, 715-721 Conductance quantization in carbon nanotubes: neutrionos on cylinder surface. <i>Microelectronic Engineering</i> , 1999, 47, 421-423 Energy transfer efficiency of the 1.54 lb luminescence of Er-implanted silicon in relation to post-implantation annealing and impurity coimplantation. <i>Nuclear Instruments & Methods in Physics</i>	3.9 2.5	196 310 1 40 7

56	Nanotube. Strategy of Technologies for Carbon Nanotubes <i>Shinku/Journal of the Vacuum Society of Japan</i> , 1999 , 42, 711-716		1
55	Berryß Phase and Absence of Back Scattering in Carbon Nanotubes. <i>Journal of the Physical Society of Japan</i> , 1998 , 67, 2857-2862	1.5	616
54	Raman intensity of single-wall carbon nanotubes. <i>Physical Review B</i> , 1998 , 57, 4145-4153	3.3	494
53	Enhanced Yb3+-related 0.98 fh emission in porous silicon and its time decay characteristics. <i>Journal of Applied Physics</i> , 1998 , 83, 1005-1008	2.5	8
52	Effects of hydrogen plasma treatment on the 1.54 th luminescence of erbium-doped porous silicon. <i>Journal of Applied Physics</i> , 1998 , 84, 1036-1040	2.5	13
51	Physical Properties of Carbon Nanotubes 1998 ,		3720
50	Excess Li ions in a small graphite cluster. <i>Journal of Materials Research</i> , 1997 , 12, 1367-1375	2.5	55
49	Optical Activation of Erbium Doped Porous Silicon by Hydrogen Plasma Treatment. <i>Materials Research Society Symposia Proceedings</i> , 1997 , 486, 287		
48	Mechanisms for implantation induced interdiffusion at In0.53Ga0.47As/In0.52Al0.48As heterointerfaces. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1997 , 44, 28-32	3.1	
47	Tunneling conductance of connected carbon nanotubes. <i>Physical Review B</i> , 1996 , 53, 2044-2050	3.3	276
46	Photoluminescence of Erbium-Diffused Silicon. <i>Materials Research Society Symposia Proceedings</i> , 1996 , 422, 81		
45	Multiplet Structure Calculations for Rare Earth lons <i>Journal of Light and Visual Environment</i> , 1996 , 20, 15-19		
44	Photoluminescence of ytterbium-doped porous silicon. <i>Applied Physics Letters</i> , 1995 , 67, 2687-2689	3.4	15
43	Physics of carbon nanotubes. <i>Carbon</i> , 1995 , 33, 883-891	10.4	918
42	Time-resolved study on the impact excitation and quenching processes of the 1.54 helps electroluminescence emission of Er ions in InP. <i>Journal of Applied Physics</i> , 1994 , 76, 3714-3719	2.5	7
41	Hindered rotation of solid 12C60 and 13C60. <i>Physical Review B</i> , 1994 , 50, 5680-5688	3.3	11
40	Electrochemical Er doping of porous silicon and its room-temperature luminescence at ~1.54 lb. <i>Applied Physics Letters</i> , 1994 , 65, 983-985	3.4	133
39	Thermodynamic model of the ordering transition in solid C60. <i>Physical Review B</i> , 1994 , 49, 2143-2147	3.3	17

38	Defect-enhanced interdiffusion at the InGaAs/InAlAs interface due to Si ion implantation. <i>Journal of Applied Physics</i> , 1994 , 75, 2410-2414	2.5	8
37	Infrared-active modes of C70. Chemical Physics Letters, 1994, 227, 365-370	2.5	20
36	Relativistic Effect on Multiplet Terms of Rare Earth Ions. <i>Journal of the Physical Society of Japan</i> , 1994 , 63, 807-813	1.5	4
35	Magnetic energy bands of carbon nanotubes. <i>Physical Review B</i> , 1994 , 50, 14698-14701	3.3	72
34	SUPERCONDUCTING PROPERTIES OF FULLERENES 1994 , 471-564		1
33	Electronic structure of double-layer graphene tubules. <i>Journal of Applied Physics</i> , 1993 , 73, 494-500	2.5	278
32	Ab Initio Calculations of the Multiplet Terms of (TmP4)3+ Cluster. <i>Journal of the Physical Society of Japan</i> , 1993 , 62, 2924-2933	1.5	7
31	Mutiplet structures of C60 ions. <i>Chemical Physics Letters</i> , 1993 , 210, 159-164	2.5	24
30	Group theoretical concepts for C60 and other fullerenes. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1993 , 19, 122-128	3.1	8
29	Electronic structure and growth mechanism of carbon tubules. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1993 , 19, 185-191	3.1	81
28	Electrical and optical characterization of defect levels caused in InGaAs by boron ion implantation. <i>Nuclear Instruments & Methods in Physics Research B</i> , 1993 , 80-81, 632-635	1.2	
27	Formation of general fullerenes by their projection on a honeycomb lattice. <i>Physical Review B</i> , 1992 , 45, 13834-13836	3.3	63
26	Cluster calculations of rare-earth ions in semiconductors. <i>Physical Review B</i> , 1992 , 46, 1423-1428	3.3	12
25	Carbon fibers based on C60 and their symmetry. <i>Physical Review B</i> , 1992 , 45, 6234-6242	3.3	426
24	Ground states of large icosahedral fullerenes. <i>Physical Review B</i> , 1992 , 46, 9906-9909	3.3	21
23	C60-related tubules. Solid State Communications, 1992, 84, 201-205	1.6	109
22	Electronic structure of chiral graphene tubules. <i>Applied Physics Letters</i> , 1992 , 60, 2204-2206	3.4	2314
21	Electronic structure of graphene tubules based on C60. <i>Physical Review B</i> , 1992 , 46, 1804-1811	3.3	1126

20	Topological defects in large fullerenes. Chemical Physics Letters, 1992, 195, 537-542	2.5	106
19	Theory of positive muon spin rotation in La2CuO4. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 185-189, 1217-1218	1.3	14
18	A Complete Set of Spin 1/2 Functions by Youngß Diagrams. <i>Journal of the Physical Society of Japan</i> , 1991 , 60, 2388-2393	1.5	2
17	Characteristics of the electroluminescence and photoluminescence emission of erbium ions doped in InP and the energy transfer mechanism. <i>Journal of Applied Physics</i> , 1991 , 70, 6993-6998	2.5	15
16	A Proof of the Completeness of the Non Crossed Diagrams in Spin 1/2 Heisenberg Model. <i>Journal of the Physical Society of Japan</i> , 1990 , 59, 482-491	1.5	17
15	Electronic structures of Nd2CuO4 and its electron-doped cluster systems. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1990 , 6, L1-L4	3.1	3
14	Symmetry Studies of Antiferromagnetic Heisenberg Model. <i>Journal of the Physical Society of Japan</i> , 1990 , 59, 3886-3897	1.5	9
13	Cluster simulation of correlation effect in hole-doped high-temperature superconductor. <i>Solid State Communications</i> , 1989 , 71, 425-429	1.6	17
12	Possible permutation symmetry in two dimensional Heisenberg Model. <i>Solid State Communications</i> , 1989 , 72, 517-521	1.6	11
11	Electronic Structures of Unoccupied Bands in Graphite. <i>Journal of the Physical Society of Japan</i> , 1989 , 58, 2098-2108	1.5	19
10	Spin-polaron pairing and high-temperature superconductivity. <i>Solid State Communications</i> , 1988 , 67, 363-367	1.6	41
9	Theory of nuclear magnetic resonance in graphite and graphite intercalation compounds. <i>Synthetic Metals</i> , 1988 , 23, 265-270	3.6	2
8	Positron annihilation in graphite and graphite intercalation compounds. Synthetic Metals, 1988, 23, 217	'- <u>3</u> 22	5
7	Nuclear magnetic resonance in higher-stage graphite intercalation compounds. <i>Physical Review B</i> , 1987 , 35, 2963-2971	3.3	14
6	Vibronic states of bond alternation defect in polyacetylene and ESR spectrum. <i>Synthetic Metals</i> , 1987 , 17, 81-86	3.6	4
5	A universal distribution function of relaxation in amorphous materials. <i>Solid State Communications</i> , 1987 , 63, 625-627	1.6	35
4	Orbital susceptibility of higher-stage graphite intercalation compounds. <i>Physical Review B</i> , 1986 , 33, 7218-7227	3.3	40
3	Orbital susceptibility of higher stage GICs. <i>Synthetic Metals</i> , 1985 , 12, 295-300	3.6	7

Vibronic States of Polyacetylene, (CH)x. Journal of the Physical Society of Japan, 1983, 52, 407-416

1.5 17

Crystal and domain structures of PbZrO3. Ferroelectrics, 1981, 37, 655-655

0.6