
Sara Pescetelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3993177/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synergic use of two-dimensional materials to tailor interfaces in large area perovskite modules. Nano Energy, 2022, 95, 107019.	8.2	16
2	Reevaluation of Photoluminescence Intensity as an Indicator of Efficiency in Perovskite Solar Cells. Solar Rrl, 2022, 6, .	3.1	19
3	Integration of two-dimensional materials-based perovskite solar panels into a stand-alone solar farm. Nature Energy, 2022, 7, 597-607.	19.8	66
4	Laser Processing Optimization for Large-Area Perovskite Solar Modules. Energies, 2021, 14, 1069.	1.6	17
5	Systematic approach to the study of the photoluminescence of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>MAPb </mml:mi> <mml:msub> <mml mathvariant="normal">I <mml:mn>3 </mml:mn> </mml </mml:msub> </mml:mrow> . Physical Review Materials, 2021, 5, .</mml:math 	l:mi 0.9	5
6	Air-Processed Infrared-Annealed Printed Methylammonium-Free Perovskite Solar Cells and Modules Incorporating Potassium-Doped Graphene Oxide as an Interlayer. ACS Applied Materials & Interfaces, 2021, 13, 11741-11754.	4.0	45
7	Transition metal carbides (MXenes) for efficient NiO-based inverted perovskite solar cells. Nano Energy, 2021, 82, 105771.	8.2	74
8	Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 22368-22380.	4.0	39
9	On the scaling of perovskite photovoltaics to modules and panels. , 2021, , .		0
10	Mixed Cation Halide Perovskite under Environmental and Physical Stress. Materials, 2021, 14, 3954.	1.3	14
11	Ag/MgO Nanoparticles via Gas Aggregation Nanocluster Source for Perovskite Solar Cell Engineering. Materials, 2021, 14, 5507.	1.3	4
12	Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. Energies, 2021, 14, 708.	1.6	8
13	Graphene-Based Interconnects for Stable Dye-Sensitized Solar Modules. ACS Applied Energy Materials, 2021, 4, 98-110.	2.5	9
14	New Insights into the Structure of Glycols and Derivatives: A Comparative X-Ray Diffraction, Raman and Molecular Dynamics Study of Ethane-1,2-Diol, 2-Methoxyethan-1-ol and 1,2-Dimethoxy Ethane. Crystals, 2020, 10, 1011.	1.0	5
15	Effect of Calcination Time on the Physicochemical Properties and Photocatalytic Performance of Carbon and Nitrogen Co-Doped TiO2 Nanoparticles. Catalysts, 2020, 10, 847.	1.6	13
16	Copperâ€Based Corrole as Thermally Stable Hole Transporting Material for Perovskite Photovoltaics. Advanced Functional Materials, 2020, 30, 2003790.	7.8	26
17	Spin Coating Immobilisation of C-N-TiO2 Co-Doped Nano Catalyst on Glass and Application for Photocatalysis or as Electron Transporting Layer for Perovskite Solar Cells. Coatings, 2020, 10, 1029.	1.2	12
18	[1]Benzothieno[3,2â€b][1]benzothiopheneâ€Phthalocyanine Derivatives: A Subclass of Solutionâ€Processable Electronâ€Rich Hole Transport Materials, ChemPlusChem, 2020, 85, 2376-2386	1.3	16

SARA PESCETELLI

#	Article	IF	CITATIONS
19	Two-dimensional materials in perovskite solar cells. JPhys Energy, 2020, 2, 031003.	2.3	27
20	Mechanically Stacked, Two-Terminal Graphene-Based Perovskite/Silicon Tandem Solar Cell with Efficiency over 26%. Joule, 2020, 4, 865-881.	11.7	125
21	lon Dynamics in Single and Multi-Cation Perovskite. ECS Journal of Solid State Science and Technology, 2020, 9, 065015.	0.9	5
22	Modeling of Halide Perovskite/Ti3C2TX MXenes Solar Cells. , 2019, , .		0
23	Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nature Materials, 2019, 18, 1228-1234.	13.3	418
24	Graphene-Induced Improvements of Perovskite Solar Cell Stability: Effects on Hot-Carriers. Nano Letters, 2019, 19, 684-691.	4.5	72
25	Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Letters, 2019, 4, 1862-1871.	8.8	125
26	Hybrid Perovskites Depth Profiling with Variable-Size Argon Clusters and Monatomic Ions Beams. Materials, 2019, 12, 726.	1.3	39
27	Large area perovskite solar modules with improved efficiency and stability. , 2019, , .		5
28	Thermally Induced Fullerene Domain Coarsening Process in Organic Solar Cells. IEEE Transactions on Electron Devices, 2019, 66, 678-688.	1.6	16
29	Aging effects in interface-engineered perovskite solar cells with 2D nanomaterials: A depth profile analysis. Materials Today Energy, 2018, 9, 1-10.	2.5	48
30	Perovskite-Polymer Blends Influencing Microstructures, Nonradiative Recombination Pathways, and Photovoltaic Performance of Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 42542-42551.	4.0	50
31	Trap states in multication mesoscopic perovskite solar cells: A deep levels transient spectroscopy investigation. Applied Physics Letters, 2018, 113, .	1.5	33
32	Graphene and Related 2D Materials: A Winning Strategy for Enhanced Efficiency and Stability in Perovskite Photovoltaics. , 2018, , .		0
33	MoS ₂ Quantum Dot/Graphene Hybrids for Advanced Interface Engineering of a CH ₃ NH ₃ Pbl ₃ Perovskite Solar Cell with an Efficiency of over 20%. ACS Nano, 2018, 12, 10736-10754.	7.3	201
34	Graphene-engineered automated sprayed mesoscopic structure for perovskite device scaling-up. 2D Materials, 2018, 5, 045034.	2.0	34
35	XPS depth profiles of organo lead halide layers and full perovskite solar cells by variable-size argon clusters. , 2018, , .		3
36	Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm ² Active Area. ACS Energy Letters, 2017, 2, 279-287.	8.8	196

SARA PESCETELLI

#	Article	IF	CITATIONS
37	Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells. Applied Surface Science, 2017, 399, 515-522.	3.1	56
38	A universal drift-diffusion simulator and its application to OLED simulations. , 2017, , .		0
39	Grapheneâ€Based Electron Transport Layers in Perovskite Solar Cells: A Stepâ€Up for an Efficient Carrier Collection. Advanced Energy Materials, 2017, 7, 1701349.	10.2	85
40	Stability of dye-sensitized solar cells under extended thermal stress. Physical Chemistry Chemical Physics, 2017, 19, 22546-22554.	1.3	28
41	Laser-Patterning Engineering for Perovskite Solar Modules With 95% Aperture Ratio. IEEE Journal of Photovoltaics, 2017, 7, 1674-1680.	1.5	116
42	Graphene and related 2D materials for high efficient and stable perovskite solar cells. , 2017, , .		8
43	Efficiency and Stability Enhancement in Perovskite Solar Cells by Inserting Lithiumâ€Neutralized Graphene Oxide as Electron Transporting Layer. Advanced Functional Materials, 2016, 26, 2686-2694.	7.8	180
44	Mesoscopic Perovskite Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 26989-26997.	4.0	44
45	Hybrid perovskite as substituent of indium and gallium in light emitting diodes. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 958-961.	0.8	5
46	Graphene–Perovskite Solar Cells Exceed 18 % Efficiency: A Stability Study. ChemSusChem, 2016, 9, 2609-2619.	3.6	163
47	Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells. Nano Energy, 2016, 22, 349-360.	8.2	166
48	Stability of dye-sensitized solar cell under reverse bias condition: Resonance Raman spectroscopy combined with spectrally resolved analysis by transmittance and efficiency mapping. Vibrational Spectroscopy, 2016, 84, 106-117.	1.2	20
49	Polyiodides formation in solvent based Dye Sensitized Solar Cells under reverse bias stress. Journal of Power Sources, 2015, 287, 87-95.	4.0	26
50	High efficient perovskite solar cells by employing zinc-phthalocyanine as hole transporting layer. , 2015, , .		4
51	Device architectures with nanocrystalline mesoporous scaffolds and thin compact layers for flexible perovskite solar cells and modules. , 2015, , .		0
52	Enhanced stability for dye-sensitized solar cells. , 2015, , .		0
53	Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UVâ€Irradiated TiO ₂ Scaffolds on Plastic Substrates. Advanced Energy Materials, 2015, 5, 1401808.	10.2	241
54	Micro-Raman analysis of reverse bias stressed dye-sensitized solar cells. RSC Advances, 2014, 4, 12366.	1.7	25

SARA PESCETELLI

#	Article	IF	CITATIONS
55	Fabrication and reliability of dye solar cells: A resonance Raman scattering study. Microelectronics Reliability, 2012, 52, 2487-2489.	0.9	15
56	Off-resonancel "â `Xmixing in semiconductor quantum wires. Physical Review B, 1998, 57, 9770-9779.	1.1	9
57	Optical and Electronic Properties of Semiconductor 2D Nanosystems: Self-consistent Tight-binding Calculations. VLSI Design, 1998, 8, 469-473.	0.5	0
58	Conduction-band mixing in T- and V-shaped quantum wires. Physical Review B, 1997, 56, R1668-R1671.	1.1	32
59	Γ–X Mixing in T- and V-Shaped Quantum Wires. Physica Status Solidi (B): Basic Research, 1997, 204, 275-278.	0.7	1
60	Self-consistent tight-binding calculations of electronic and optical properties of semiconductor nanostructures. Solid State Communications, 1996, 98, 803-806.	0.9	43
61	2D material engineering of perovskite solar cells: the emergence of MXenes. , 0, , .		0
62	Two-dimensional MXenes for interface engineering in Perovskite solar cells. , 0, , .		1
63	Halide Perovskite Modules and Panels , 0, , .		0
64	Halide perovskite modules and panels. , 0, , .		0