
Taolei Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3993100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A phosphorescent probe for in vivo imaging in the second near-infrared window. Nature Biomedical Engineering, 2022, 6, 629-639.	11.6	67
2	Chemical compositions and pharmacological activities of natural musk (Moschus) and artificial musk: A review. Journal of Ethnopharmacology, 2022, 284, 114799.	2.0	12
3	Mechanisms of Pannexin 1 (PANX1) Channel Mechanosensitivity and Its Pathological Roles. International Journal of Molecular Sciences, 2022, 23, 1523.	1.8	10
4	Thiolate Etching Route for the Ripening of Uniform Ag ₂ Te Quantum Dots Emitting in the Second Near-Infrared Window: Implication for Noninvasive <i>In Vivo</i> Imaging. ACS Applied Nano Materials, 2022, 5, 3415-3421.	2.4	6
5	Engineering Nanointerfaces of Au ₂₅ Clusters for Chaperone-Mediated Peptide Amyloidosis. Nano Letters, 2022, 22, 2964-2970.	4.5	4
6	Gold nanoclusters eliminate obesity induced by antipsychotics. Scientific Reports, 2022, 12, 5502.	1.6	3
7	Enhanced delivery of theranostic liposomes through NO-mediated tumor microenvironment remodeling. Nanoscale, 2022, 14, 7473-7479.	2.8	3
8	High efficiency and related mechanism of Au(RC) nanoclusters on disaggregating Aβ fibrils. Journal of Colloid and Interface Science, 2022, 621, 67-76.	5.0	5
9	Chiral effect on AÎ ² fibrillation from molecular-scale to nanoscale. Nano Research, 2022, 15, 6721-6729.	5.8	6
10	A Lysosome-Targeting Self-Condensation Prodrug-Nanoplatform System for Addressing Drug Resistance of Cancer. Nano Letters, 2022, 22, 3983-3992.	4.5	14
11	NLRP3/Caspase-1-Mediated Pyroptosis of Astrocytes Induced by Antipsychotics Is Inhibited by a Histamine H1 Receptor-Selective Agonist. Frontiers in Aging Neuroscience, 2022, 14, .	1.7	5
12	Applications of Gold Nanoparticles in Brain Diseases across the Blood-Brain Barrier. Current Medicinal Chemistry, 2022, 29, 6063-6083.	1.2	2
13	Ultrasmall copper nanoclusters with multi-enzyme activities. RSC Advances, 2021, 11, 14517-14526.	1.7	11
14	Isomeric Effect of Nano-Inhibitors on Aβ ₄₀ Fibrillation at The Nano-Bio Interface. ACS Applied Materials & Interfaces, 2021, 13, 4894-4904.	4.0	10
15	Nanoprobe-mediated precise imaging and therapy of glioma. Nanoscale Horizons, 2021, 6, 634-650.	4.1	12
16	Preparation, pharmacokinetic and application of gold nanoclusters (AuNCs) in tumor treatment. Current Medicinal Chemistry, 2021, 28, 6990-7005.	1.2	7
17	Circuit Mechanisms of L-DOPA-Induced Dyskinesia (LID). Frontiers in Neuroscience, 2021, 15, 614412.	1.4	8
18	Kinetic study of Aβ(1-42) amyloidosis in the presence of ganglioside-containing vesicles. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110615.	2.5	32

TAOLEI SUN

#	Article	lF	CITATIONS
19	Au23(CR)14 nanocluster restores fibril Aβ's unfolded state with abolished cytotoxicity and dissolves endogenous Aβ plaques. National Science Review, 2020, 7, 763-774.	4.6	21
20	Cichoric acid from witloof inhibit misfolding aggregation and fibrillation of hIAPP. International Journal of Biological Macromolecules, 2020, 148, 1272-1279.	3.6	16
21	Sigma-2 Receptor—A Potential Target for Cancer/Alzheimer's Disease Treatment via Its Regulation of Cholesterol Homeostasis. Molecules, 2020, 25, 5439.	1.7	21
22	Charge effects at nano-bio interfaces: a model of charged gold nanoclusters on amylin fibrillation. Nanoscale, 2020, 12, 18834-18843.	2.8	9
23	New insights into the synthesis, toxicity and applications of gold nanoparticles in CT imaging and treatment of cancer. Nanomedicine, 2020, 15, 1127-1145.	1.7	33
24	Synthesis of Polysubstituted 2 <i>H</i> â€Pyranâ€2â€ones or Phenols via Oneâ€Pot Reaction of (<i>E</i>)â€ <i>β</i> â€Chlorovinyl Ketones and Electronâ€Withdrawing Group Substituted Acetates or <i>β</i> â€Diketones. European Journal of Organic Chemistry, 2020, 2020, 1976-1986.	1.2	4
25	High-Efficiency Phosphopeptide and Glycopeptide Simultaneous Enrichment by Hydrogen Bond–based Bifunctional Smart Polymer. Analytical Chemistry, 2020, 92, 6269-6277.	3.2	42
26	Optimal route of gold nanoclusters administration in mice targeting Parkinson's disease. Nanomedicine, 2020, 15, 563-580.	1.7	15
27	Olanzapine-Induced Activation of Hypothalamic Astrocytes and Toll-Like Receptor-4 Signaling via Endoplasmic Reticulum Stress Were Related to Olanzapine-Induced Weight Gain. Frontiers in Neuroscience, 2020, 14, 589650.	1.4	10
28	Smart polymers driven by multiple and tunable hydrogen bonds for intact phosphoprotein enrichment. Science and Technology of Advanced Materials, 2019, 20, 858-869.	2.8	6
29	Tuning Chirality Transfer and Amplification of Supraparticles via Solvent Inducing Self-Aggregation of Chiral Gold Nanoclusters. Journal of Physical Chemistry C, 2019, 123, 24973-24978.	1.5	7
30	Self-assembled chiral materials from achiral components or racemates. European Polymer Journal, 2019, 118, 365-381.	2.6	20
31	The Roles of Intracellular Chaperone Proteins, Sigma Receptors, in Parkinson's Disease (PD) and Major Depressive Disorder (MDD). Frontiers in Pharmacology, 2019, 10, 528.	1.6	34
32	cAMP-modulated biomimetic ionic nanochannels based on a smart polymer. Journal of Materials Chemistry B, 2019, 7, 3710-3715.	2.9	14
33	Binding between Prion Protein and Aβ Oligomers Contributes to the Pathogenesis of Alzheimer's Disease. Virologica Sinica, 2019, 34, 475-488.	1.2	10
34	A fluorescent nanoprobe based on HgS/ZnS core/shell quantum dots for in-situ rapid visual detection of Cr3+. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	7
35	Olanzapine-induced endoplasmic reticulum stress and inflammation in the hypothalamus were inhibited by an ER stress inhibitor 4-phenylbutyrate. Psychoneuroendocrinology, 2019, 104, 286-299.	1.3	23
36	Magnetic immobilization of a quorum sensing signal hydrolase, AiiA. MicrobiologyOpen, 2019, 8, e00797.	1.2	8

TAOLEI SUN

#	Article	IF	CITATIONS
37	Click Reaction for Reversible Encapsulation of Single Yeast Cells. ACS Nano, 2019, 13, 14459-14467.	7.3	41
38	Gold nanoclusters for Parkinson's disease treatment. Biomaterials, 2019, 194, 36-46.	5.7	99
39	Chiral β-HgS quantum dots: Aqueous synthesis, optical properties and cytocompatibility. Journal of Colloid and Interface Science, 2019, 537, 422-430.	5.0	20
40	Mixed-solvent precipitation: A facile approach for nanoparticle self-assembled monolayers. Applied Surface Science, 2019, 465, 526-531.	3.1	2
41	A biomimetic design for a sialylated, glycan-specific smart polymer. NPG Asia Materials, 2018, 10, e472-e472.	3.8	11
42	A high-tap-density nanosphere-assembled microcluster to simultaneously enable high gravimetric, areal and volumetric capacities: a case study of TiO ₂ anode. Journal of Materials Chemistry A, 2018, 6, 11916-11928.	5.2	10
43	New Opportunities and Challenges of Smart Polymers in Postâ€Translational Modification Proteomics. Advanced Materials, 2017, 29, 1604670.	11.1	62
44	The size-effect of gold nanoparticles and nanoclusters in the inhibition of amyloid-β fibrillation. Nanoscale, 2017, 9, 4107-4113.	2.8	126
45	Exploring the role of molecular chirality in the photo-responsiveness of dipeptide-based gels. Journal of Materials Chemistry B, 2017, 5, 3163-3171.	2.9	20
46	A novel aggregation-induced emission enhancement triggered by the assembly of a chiral gelator: from non-emissive nanofibers to emissive micro-loops. Chemical Communications, 2017, 53, 447-450.	2.2	13
47	Singlet Fission: Progress and Prospects in Solar Cells. Advanced Materials, 2017, 29, 1601652.	11.1	158
48	Stereoselective Oneâ€Pot Sequential Dehydrochlorination/ <i>trans</i> â€Hydrofluorination Reaction of βâ€Chloroâ€Î±,βâ€unsaturated Aldehydes or Ketones: Facile Access to (<i>Z</i>)â€Î²â€Fluoroâ€Î²â€arylenals/βâ€Fluoroâ€Î²â€arylenones. Advanced Synthesis and Catalysis, 2017, 359	2.1 9, 4348-43	18 858.
49	Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nature Communications, 2017, 8, 461.	5.8	71
50	Developing an Inositol-Phosphate-Actuated Nanochannel System by Mimicking Biological Calcium Ion Channels. ACS Applied Materials & Interfaces, 2017, 9, 32554-32564.	4.0	23
51	Rapid and high-efficiency discrimination of different sialic acid species using dipeptide-based fluorescent sensors. Analyst, The, 2017, 142, 3564-3568.	1.7	11
52	Sialic Acid-Targeted Biointerface Materials and Bio-Applications. Polymers, 2017, 9, 249.	2.0	24
53	Dipeptide-Based Carbohydrate Receptors and Polymers for Glycopeptide Enrichment and Glycan Discrimination. ACS Applied Materials & amp; Interfaces, 2016, 8, 22084-22092.	4.0	31
54	Chiral Gold Nanoclusters: A New Near-Infrared Fluorescent Probe. Acta Chimica Sinica, 2016, 74, 363.	0.5	9

TAOLEI SUN

#	Article	IF	CITATIONS
55	Surface Stiffness—a Parameter for Sensing the Chirality of Saccharides. ACS Applied Materials & Interfaces, 2015, 7, 27223-27233.	4.0	19
56	Disaccharide-driven transition of macroscopic properties: from molecular recognition to glycopeptide enrichment. Chemical Communications, 2015, 51, 16111-16114.	2.2	11
57	Chiralityâ€Assisted Ringâ€Like Aggregation of Aβ(1 – 40) at Liquid–Solid Interfaces: A Stereoselective Twoâ€6tep Assembly Process. Angewandte Chemie - International Edition, 2015, 54, 2245-2250.	7.2	47
58	Chiralityâ€Driven Wettability Switching and Mass Transfer. Angewandte Chemie - International Edition, 2014, 53, 930-932.	7.2	39
59	Solventâ€Driven Chiralâ€Interaction Reversion for Organogel Formation. Angewandte Chemie - International Edition, 2014, 53, 2124-2129.	7.2	71
60	Chiral Effect at Protein/Graphene Interface: A Bioinspired Perspective To Understand Amyloid Formation. Journal of the American Chemical Society, 2014, 136, 10736-10742.	6.6	105
61	Chiral biointerface materials. Chemical Society Reviews, 2012, 41, 1972-1984.	18.7	181
62	The transformation of chiral signals into macroscopic properties of materials using chirality-responsive polymers. NPG Asia Materials, 2012, 4, e4-e4.	3.8	54
63	Functional biointerface materials inspired from nature. Chemical Society Reviews, 2011, 40, 2909.	18.7	248
64	Chiralityâ€Triggered Wettability Switching on a Smart Polymer Surface. Advanced Materials, 2011, 23, 1615-1620.	11.1	84
65	Biomimetic Smart Interface Materials for Biological Applications. Advanced Materials, 2011, 23, H57-77.	11.1	242
66	Saccharide-sensitive wettability switching on a smart polymer surface. Soft Matter, 2009, 5, 2759.	1.2	49
67	Stereospecific Interaction between Immune Cells and Chiral Surfaces. Journal of the American Chemical Society, 2007, 129, 1496-1497.	6.6	135
68	Conformational PreferencesÂof Allene Ketones in Lewis Base Catalysis: Synthesis of 4Hâ€Pyrans and 3,4â€Dihydroâ€2Hâ€pyrans viaαâ€Regioselective [4+2] AnnulationÂof γâ€&ubstituted Allene Ketones and Activa Alkenes. Asian Journal of Organic Chemistry, 0, , .	ated	1