
Warren W Wood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3992931/publications.pdf Version: 2024-02-01

WARDEN WWOOD

#	Article	IF	CITATIONS
1	Chemical and Isotopic Methods for Quantifying Ground-Water Recharge in a Regional, Semiarid Environment. Ground Water, 1995, 33, 458-468.	0.7	269
2	Hydrology of the coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrogeology Journal, 2001, 9, 358-366.	0.9	79
3	Ground-water control of evaporite deposition. Economic Geology, 1990, 85, 1226-1235.	1.8	78
4	Source of solutes to the coastal sabkha of Abu Dhabi. Bulletin of the Geological Society of America, 2002, 114, 259-268.	1.6	77
5	Natural free convection in porous media: First field documentation in groundwater. Geophysical Research Letters, 2009, 36, .	1.5	71
6	Eolian transport, saline lake basins, and groundwater solutes. Water Resources Research, 1995, 31, 3121-3129.	1.7	67
7	Quantifying Macropore Recharge: Examples from a Semi-Arid Area. Ground Water, 1997, 35, 1097-1106.	0.7	60
8	Chemical openness and potential for misinterpretation of the solute environment of coastal sabkhat. Chemical Geology, 2005, 215, 361-372.	1.4	55
9	Groundwater Depletion: A Significant Unreported Source of Atmospheric Carbon Dioxide. Earth's Future, 2017, 5, 1133-1135.	2.4	44
10	Rapid late Pleistocene/Holocene uplift and coastal evolution of the southern Arabian (Persian) Gulf. Quaternary Research, 2012, 77, 215-220.	1.0	34
11	Radon (222Rn) in Ground Water of Fractured Rocks: A Diffusion/Ion Exchange Model. Ground Water, 2004, 42, 552-567.	0.7	28
12	Timing of recharge, and the origin, evolution and distribution of solutes in a hyperarid aquifer system. Developments in Water Science, 2003, 50, 295-312.	0.1	27
13	Eolian Transport of Geogenic Hexavalent Chromium to Ground Water. Ground Water, 2010, 48, 19-29.	0.7	23
14	Electrical imaging and fluid modeling of convective fingering in a shallow water-table aquifer. Water Resources Research, 2014, 50, 954-968.	1.7	19
15	Source of paleo-groundwater in the Emirate of Abu Dhabi, United Arab Emirates: evidence from unusual oxygen and deuterium isotope data. Hydrogeology Journal, 2011, 19, 155-161.	0.9	18
16	Atmospheric bromine flux from the coastal Abu Dhabi sabkhat: A groundâ€water massâ€balance investigation. Geophysical Research Letters, 2007, 34, .	1.5	15
17	Sources of dissolved solids and water in Wadi Al Bih aquifer, Ras Al Khaimah Emirate, United Arab Emirates. Hydrogeology Journal, 2007, 15, 1553-1563.	0.9	12
18	Solute and isotope constraint of groundwater recharge simulation in an arid environment, Abu Dhabi Emirate, United Arab Emirates. Hydrogeology Journal, 2007, 15, 1307-1315.	0.9	11

WARREN W WOOD

#	Article	IF	CITATIONS
19	A Hypothesis of Ion Filtration in a Potable-Water Aquifer System. Ground Water, 1976, 14, 233-244.	0.7	10
20	Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE. Chemical Geology, 2014, 371, 1-8.	1.4	9
21	Dating of holocene ground-water recharge in western part of Abu Dhabi (United Arab Emirates): Constraints on global climate-change models. Developments in Water Science, 2003, 50, 379-385.	0.1	8
22	Reductionism to Integrationism: A Paradigm Shift. Ground Water, 2012, 50, 167-167.	0.7	8
23	Geogenic groundwater solutes: the myth. Hydrogeology Journal, 2019, 27, 2729-2738.	0.9	8
24	Global Groundwater Solute Composition and Concentrations. Ground Water, 2022, 60, 714-720.	0.7	7
25	Densityâ€Driven Freeâ€Convection Model for Isotopically Fractionated Geogenic Nitrate in Sabkha Brine. Ground Water, 2017, 55, 199-207.	0.7	6
26	Groundwater "Durability―Not "Sustainability�. Ground Water, 2020, 58, 858-859.	0.7	6
27	Nanobots: A New Paradigm for Hydrogeologic Characterization?. Ground Water, 2005, 43, 463-463.	0.7	5
28	Geochemistry and isotopic analysis of brines in the coastal sabkhas, Eastern region, Kingdom of Saudi Arabia. Journal of Arid Environments, 2020, 178, 104142.	1.2	5
29	Origin of solutes in a regional multi-layered sedimentary aquifer system (a case study from the Rub' al) Tj ETO	Qq110.7	84314 rgBT /(
30	Enhanced Geothermal Systems: An Opportunity for Hydrogeology. Ground Water, 2009, 47, 751-751.	0.7	4
31	Carbon Dioxide and Ground Water Extraction in the United States. Ground Water, 2009, 47, 168-169.	0.7	3
32	Groundwater and Solute Budget (A Case Study from Sabkha Matti, Saudi Arabia). Hydrology, 2020, 7, 94.	1.3	3
33	New Water. Ground Water, 2008, 46, 517-517.	0.7	2
34	Fluxes versus the "Frankenstein―model of Earth Science education. Hydrogeology Journal, 2014, 22, 985-986.	0.9	2
35	Food Security and Inaccurate Quantification ofÂGroundwater Irrigation Use. Ground Water, 2021, 59, 782-783.	0.7	2
36	Electrical Resistivity tomography to image convective flow in groundwater: Examples from the United Arab Emirates Sabkha. , 2017, , .		1

3

#	Article	lF	CITATIONS
37	Chemical evolution of an inland sabkha: a case study from Sabkha Matti, Saudi Arabia. Hydrogeology Journal, 2021, 29, 1939-1951.	0.9	1
38	Altithermal Climate Change and Groundwater Development. Ground Water, 2022, 60, 451-453.	0.7	1
39	Water Resources Take Energy. Ground Water, 2008, 46, 080208155353221-???.	0.7	0
40	Sea Level Rise Cut in Half?. Ground Water, 2018, 56, 845-845.	0.7	0
41	Application of Multi-Tracer Methods to Evaluate Nitrate Sources and Transformation in Sabkha Matti (Saudi Arabia). E3S Web of Conferences, 2019, 98, 12018.	0.2	0
42	Reply to Comment by Bredehoeft on "Groundwater †Durability' Not †Sustainability'?― Ground V 2021, 59, 160-160.	Vater,	0
43	Isotopically Enriched Geogenic δ81 Br and δ37 Cl : Primary Evidence for the Ascending Brine Model. Ground Water, 2021, 59, 671-676.	0.7	0