Mingye Feng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3992531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phagocytosis checkpoints as new targets for cancer immunotherapy. Nature Reviews Cancer, 2019, 19, 568-586.	28.4	557
2	Macrophages eat cancer cells using their own calreticulin as a guide: Roles of TLR and Btk. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2145-2150.	7.1	210
3	Programmed cell removal by calreticulin in tissue homeostasis and cancer. Nature Communications, 2018, 9, 3194.	12.8	114
4	Myeloid Cell Origins, Differentiation, and Clinical Implications. Microbiology Spectrum, 2016, 4, .	3.0	59
5	An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nature Communications, 2021, 12, 5908.	12.8	56
6	Harnessing and Enhancing Macrophage Phagocytosis for Cancer Therapy. Frontiers in Immunology, 2021, 12, 635173.	4.8	41
7	Effect of cabazitaxel on macrophages improves CD47-targeted immunotherapy for triple-negative breast cancer. , 2021, 9, e002022.		40
8	Targeting Fc Receptor-Mediated Effects and the "Don't Eat Me―Signal with an Oncolytic Virus Expressing an Anti-CD47 Antibody to Treat Metastatic Ovarian Cancer. Clinical Cancer Research, 2022, 28, 201-214.	7.0	31
9	Promoting antibody-dependent cellular phagocytosis for effective macrophage-based cancer immunotherapy. Science Advances, 2022, 8, eabl9171.	10.3	30
10	The GABA receptor GABRR1 is expressed on and functional in hematopoietic stem cells and megakaryocyte progenitors. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18416-18422.	7.1	28
11	Warburg Effect Is a Cancer Immune Evasion Mechanism Against Macrophage Immunosurveillance. Frontiers in Immunology, 2020, 11, 621757.	4.8	24
12	Screening for genes that regulate the differentiation of human megakaryocytic lineage cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9308-E9316.	7.1	22
13	Targeting macrophages for enhancing CD47 blockade–elicited lymphoma clearance and overcoming tumor-induced immunosuppression. Blood, 2022, 139, 3290-3302.	1.4	20
14	Research on oral microbiota of monozygotic twins with discordant caries experience - in vitro and in vivo study. Scientific Reports, 2018, 8, 7267.	3.3	15
15	CD84 is a regulator of the immunosuppressive microenvironment in Multiple Myeloma. JCI Insight, 2021, 6, .	5.0	15
16	Targeting tumor-associated macrophages for cancer immunotherapy. International Review of Cell and Molecular Biology, 2022, , 61-108.	3.2	13
17	Steroid nuclear receptor coactivator 2 controls immune tolerance by promoting induced T _{reg} differentiation via up-regulating Nr4a2. Science Advances, 2022, 8, .	10.3	6
18	Tnfα Promotes an Immunosuppressive Microenvironment in Cutaneous T Cell Lymphoma and Regulates PD-L1 Expression. Blood, 2020, 136, 33-34.	1.4	2