List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3992340/publications.pdf

Version: 2024-02-01

	8732	7718
25,372	75	150
citations	h-index	g-index
323	323	12133
docs citations	times ranked	citing authors
	citations 323	25,372 75 citations h-index 323 323

#	Article	IF	CITATIONS
1	A deforming plate tectonic model of the South China Block since the Jurassic. Gondwana Research, 2022, 102, 3-16.	3.0	30
2	A review of machine learning in processing remote sensing data for mineral exploration. Remote Sensing of Environment, 2022, 268, 112750.	4.6	101
3	A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data. Remote Sensing, 2022, 14, 819.	1.8	28
4	Deep-sea hiatuses track the vigor of Cenozoic ocean bottom currents. Geology, 2022, 50, 710-715.	2.0	7
5	Long-term Phanerozoic sea level change from solid Earth processes. Earth and Planetary Science Letters, 2022, 584, 117451.	1.8	21
6	Dynamics of the abrupt change in Pacific Plate motion around 50 million years ago. Nature Geoscience, 2022, 15, 74-78.	5.4	17
7	Evolution of Earth's tectonic carbon conveyor belt. Nature, 2022, 605, 629-639.	13.7	43
8	A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution. Solid Earth, 2022, 13, 1127-1159.	1.2	16
9	Post-extinction recovery of the Phanerozoic oceans and biodiversity hotspots. Nature, 2022, 607, 507-511.	13.7	15
10	Bayesian geological and geophysical data fusion for the construction and uncertainty quantification of 3D geological models. Geoscience Frontiers, 2021, 12, 479-493.	4.3	27
11	Reconstructing seafloor age distributions in lost ocean basins. Geoscience Frontiers, 2021, 12, 769-780.	4.3	23
12	Coupled Evolution of Plate Tectonics and Basal Mantle Structure. Geochemistry, Geophysics, Geosystems, 2021, 22, .	1.0	10
13	Multiobjective Bayesian optimization and joint inversion for active sensor fusion. Geophysics, 2021, 86, ID1-ID17.	1.4	3
14	Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews, 2021, 214, 103477.	4.0	183
15	The carbonate compensation depth in the South Atlantic Ocean since the Late Cretaceous. Geology, 2021, 49, 873-878.	2.0	9
16	Kinematics and extent of the Piemont–Liguria Basin – implications for subduction processes in the Alps. Solid Earth, 2021, 12, 885-913.	1.2	55
17	Precipitation reconstruction from climate-sensitive lithologies using Bayesian machine learning. Environmental Modelling and Software, 2021, 139, 105002.	1.9	16
18	Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2021, 2, 382-401.	12.2	78

#	Article	IF	CITATIONS
19	Spatio-temporal evolution and dynamic origin of Jurassic-Cretaceous magmatism in the South China Block. Earth-Science Reviews, 2021, 217, 103605.	4.0	24
20	Global chemical weathering dominated by continental arcs since the mid-Palaeozoic. Nature Geoscience, 2021, 14, 690-696.	5.4	40
21	Modelling the role of dynamic topography and eustasy in the evolution of the Great Artesian Basin. Basin Research, 2021, 33, 3378-3405.	1.3	4
22	Potential encoding of coupling between Milankovitch forcing and Earth's interior processes in the Phanerozoic eustatic sea-level record. Earth-Science Reviews, 2021, 220, 103727.	4.0	16
23	Papanin Ridge and Ojin Rise Seamounts (Northwest Pacific): Dual Hotspot Tracks Formed by the Shatsky Plume. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009847.	1.0	6
24	Predicting the emplacement of Cordilleran porphyry copper systems using a spatio-temporal machine learning model. Ore Geology Reviews, 2021, 137, 104300.	1.1	8
25	The evolution of basal mantle structure in response to supercontinent aggregation and dispersal. Scientific Reports, 2021, 11, 22967.	1.6	7
26	Decoding earth's plate tectonic history using sparse geochemical data. Geoscience Frontiers, 2020, 11, 265-276.	4.3	10
27	Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. International Journal of Remote Sensing, 2020, 41, 1760-1787.	1.3	32
28	Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Research, 2020, 79, 125-139.	3.0	26
29	Environmental predictors of deep-sea polymetallic nodule occurrence in the global ocean. Geology, 2020, 48, 293-297.	2.0	30
30	Modeling the Dynamic Landscape Evolution of a Volcanic Coastal Environment Under Future Climate Trajectories. Frontiers in Earth Science, 2020, 8, .	0.8	5
31	A Global Data Set of Presentâ€Day Oceanic Crustal Age and Seafloor Spreading Parameters. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009214.	1.0	133
32	Intraplate volcanism triggered by bursts in slab flux. Science Advances, 2020, 6, .	4.7	32
33	A Quantitative Tomotectonic Plate Reconstruction of Western North America and the Eastern Pacific Basin. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009117.	1.0	41
34	East African topography and volcanism explained by a single, migrating plume. Geoscience Frontiers, 2020, 11, 1669-1680.	4.3	14
35	Integration of Selective Dimensionality Reduction Techniques for Mineral Exploration Using ASTER Satellite Data. Remote Sensing, 2020, 12, 1261.	1.8	45
36	Sea-level fluctuations driven by changes in global ocean basin volume following supercontinent break-up. Earth-Science Reviews, 2020, 208, 103293.	4.0	36

#	Article	IF	CITATIONS
37	Surrogate-assisted Bayesian inversion for landscape and basin evolution models. Geoscientific Model Development, 2020, 13, 2959-2979.	1.3	8
38	Probabilistic modelling of sedimentary basin evolution using Bayeslands. ASEG Extended Abstracts, 2019, 2019, 1-5.	0.1	0
39	Multicore Parallel Tempering Bayeslands for Basin and Landscape Evolution. Geochemistry, Geophysics, Geosystems, 2019, 20, 5082-5104.	1.0	11
40	Lost tectonic history recovered from Earth's deep mantle. Nature, 2019, 565, 432-433.	13.7	1
41	Bayeslands: A Bayesian inference approach for parameter uncertainty quantification in Badlands. Computers and Geosciences, 2019, 131, 89-101.	2.0	17
42	Constraining Absolute Plate Motions Since the Triassic. Journal of Geophysical Research: Solid Earth, 2019, 124, 7231-7258.	1.4	43
43	Sequestration and subduction of deep-sea carbonate in the global ocean since the Early Cretaceous. Geology, 2019, 47, 91-94.	2.0	32
44	A Global Plate Model Including Lithospheric Deformation Along Major Rifts and Orogens Since the Triassic. Tectonics, 2019, 38, 1884-1907.	1.3	316
45	The interplay of dynamic topography and eustasy on continental flooding in the late Paleozoic. Tectonophysics, 2019, 761, 108-121.	0.9	22
46	Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era. Geoscience Frontiers, 2019, 10, 989-1013.	4.3	126
47	Australian-Antarctic breakup and seafloor spreading: Balancing geological and geophysical constraints. Earth-Science Reviews, 2019, 188, 41-58.	4.0	49
48	Rift and plate boundary evolution across two supercontinent cycles. Global and Planetary Change, 2019, 173, 1-14.	1.6	70
49	Palaeolatitudinal distribution of lithologic indicators of climate in a palaeogeographic framework. Geological Magazine, 2019, 156, 331-354.	0.9	33
50	Global tectonic reconstructions with continuously deforming and evolving rigid plates. Computers and Geosciences, 2018, 116, 32-41.	2.0	48
51	The Dynamic Topography of Eastern China Since the Latest Jurassic Period. Tectonics, 2018, 37, 1274-1291.	1.3	35
52	Oceanic crustal carbon cycle drives 26-million-year atmospheric carbon dioxide periodicities. Science Advances, 2018, 4, eaaq0500.	4.7	52
53	Controls on the global distribution of contourite drifts: Insights from an eddy-resolving ocean model. Earth and Planetary Science Letters, 2018, 489, 228-240.	1.8	50
54	A reconstruction of the North Atlantic since the earliest Jurassic. Basin Research, 2018, 30, 160-185.	1.3	57

#	Article	IF	CITATIONS
55	Dynamic topography of passive continental margins and their hinterlands since the Cretaceous. Gondwana Research, 2018, 53, 225-251.	3.0	55
56	Tectonics and geodynamics of the eastern Tethys and northern Gondwana since the Jurassic. ASEG Extended Abstracts, 2018, 2018, 1-6.	0.1	1
57	Modelling and visualising distributed crustal deformation of Australia and Zealandia using GPlates 2.0. ASEG Extended Abstracts, 2018, 2018, 1-7.	0.1	5
58	Surface Process Models of The Lake Eyre Basin Using Badlands Software. ASEG Extended Abstracts, 2018, 2018, 1-1.	0.1	0
59	Oblique rifting: the rule, not the exception. Solid Earth, 2018, 9, 1187-1206.	1.2	85
60	On the Scales of Dynamic Topography in Wholeâ€Mantle Convection Models. Geochemistry, Geophysics, Geosystems, 2018, 19, 3140-3163.	1.0	20
61	No Evidence for Milankovitch Cycle Influence on Abyssal Hills at Intermediate, Fast, and Superfast Spreading Rates. Geophysical Research Letters, 2018, 45, 10,305.	1.5	10
62	GPlates: Building a Virtual Earth Through Deep Time. Geochemistry, Geophysics, Geosystems, 2018, 19, 2243-2261.	1.0	392
63	Geodynamic reconstruction of an accreted Cretaceous back-arc basin in the Northern Andes. Journal of Geodynamics, 2018, 121, 115-132.	0.7	21
64	Burial and exhumation history of the Galilee Basin, Australia: Implications for unconventional hydrocarbon prospectivity. AAPG Bulletin, 2018, 102, 483-507.	0.7	5
65	Geodynamic and Surface Process Evolution of New Guinea Since the Jurassic. ASEG Extended Abstracts, 2018, 2018, 1-1.	0.1	Ο
66	The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deepâ€īime Carbon Cycle. Geophysical Research Letters, 2018, 45, 5380-5389.	1.5	69
67	The influence of carbonate platform interactions with subduction zone volcanism on palaeo-atmospheric CO ₂ since the Devonian. Climate of the Past, 2018, 14, 857-870.	1.3	19
68	PyBacktrack 1.0: A Tool for Reconstructing Paleobathymetry on Oceanic and Continental Crust. Geochemistry, Geophysics, Geosystems, 2018, 19, 1898-1909.	1.0	16
69	SPGM: A Scalable PaleoGeomorphology Model. SoftwareX, 2018, 7, 263-272.	1.2	2
70	Formation and evolution of the Chain-Kairali Escarpment and the Vishnu Fracture Zone in the Western Indian Ocean. Journal of Asian Earth Sciences, 2018, 164, 307-321.	1.0	11
71	Influence of mantle flow on the drainage of eastern <scp>A</scp> ustralia since the <scp>J</scp> urassic <scp>P</scp> eriod. Geochemistry, Geophysics, Geosystems, 2017, 18, 280-305.	1.0	37
72	Origin and evolution of the deep thermochemical structure beneath Eurasia. Nature Communications, 2017, 8, 14164.	5.8	55

#	Article	IF	CITATIONS
73	A global review and digital database of large-scale extinct spreading centers. , 2017, 13, 911-949.		24
74	Dynamic topography and eustasy controlled the paleogeographic evolution of northern Africa since the midâ€Cretaceous. Tectonics, 2017, 36, 929-944.	1.3	28
75	A full-plate global reconstruction of the Neoproterozoic. Gondwana Research, 2017, 50, 84-134.	3.0	474
76	Future intraplate stress and the longevity of carbon storage. Fuel, 2017, 200, 31-36.	3.4	5
77	A reconstruction of the Eurekan Orogeny incorporating deformation constraints. Tectonics, 2017, 36, 304-320.	1.3	35
78	Correspondence: Reply to â€~Numerical modelling of the PERM anomaly and the Emeishan large igneous province'. Nature Communications, 2017, 8, 822.	5.8	6
79	The role of deep Earth dynamics in driving the flooding and emergence of New Guinea since the Jurassic. Earth and Planetary Science Letters, 2017, 479, 273-283.	1.8	5
80	Kinematic constraints on the Rodinia to Gondwana transition. Precambrian Research, 2017, 299, 132-150.	1.2	59
81	Potential links between continental rifting, CO2 degassing and climate change through time. Nature Geoscience, 2017, 10, 941-946.	5.4	136
82	Predicting Sediment Thickness on Vanished Ocean Crust Since 200 Ma. Geochemistry, Geophysics, Geosystems, 2017, 18, 4586-4603.	1.0	23
83	Oceanic Residual Topography Agrees With Mantle Flow Predictions at Long Wavelengths. Geophysical Research Letters, 2017, 44, 10,896.	1.5	18
84	Global patterns in Earth's dynamic topography since the Jurassic: the role of subducted slabs. Solid Earth, 2017, 8, 899-919.	1.2	30
85	Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences, 2017, 14, 5425-5439.	1.3	111
86	The deep Earth origin of the Iceland plume and its effects on regional surface uplift and subsidence. Solid Earth, 2017, 8, 235-254.	1.2	17
87	The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser. PLoS ONE, 2016, 11, e0150883.	1.1	41
88	Vigorous deep-sea currents cause global anomaly in sediment accumulation in the Southern Ocean. Geology, 2016, 44, 663-666.	2.0	16
89	Alignment between seafloor spreading directions and absolute plate motions through time. Geophysical Research Letters, 2016, 43, 1472-1480.	1.5	12
90	Tectonic environments of South American porphyry copper magmatism through time revealed by spatiotemporal data mining. Tectonics, 2016, 35, 2847-2862.	1.3	15

#	Article	IF	CITATIONS
91	Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences, 2016, 44, 107-138.	4.6	724
92	A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature, 2016, 533, 239-242.	13.7	73
93	Large fluctuations of shallow seas in low-lying Southeast Asia driven by mantle flow. Geochemistry, Geophysics, Geosystems, 2016, 17, 3589-3607.	1.0	28
94	Clobal plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 2016, 146, 226-250.	1.6	553
95	Tectonic evolution and deep mantle structure of the eastern Tethys since the latest Jurassic. Earth-Science Reviews, 2016, 162, 293-337.	4.0	151
96	Ridgeâ€spotting: A new test for Pacific absolute plate motion models. Geochemistry, Geophysics, Geosystems, 2016, 17, 2408-2420.	1.0	10
97	Controls on the distribution of deepâ€sea sediments. Geochemistry, Geophysics, Geosystems, 2016, 17, 3075-3098.	1.0	19
98	Abrupt plate accelerations shape rifted continental margins. Nature, 2016, 536, 201-204.	13.7	147
99	Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend: REPLY. Geology, 2016, 44, e385-e385.	2.0	3
100	Tectonic evolution of Western Tethys from Jurassic to present day: coupling geological and geophysical data with seismic tomography models. International Geology Review, 2016, 58, 1616-1645.	1.1	38
101	Subduction controls the distribution and fragmentation of Earth's tectonic plates. Nature, 2016, 535, 140-143.	13.7	112
102	Formation of Australian continental margin highlands driven by plate–mantle interaction. Earth and Planetary Science Letters, 2016, 441, 60-70.	1.8	54
103	The Late Cretaceous to recent tectonic history of the Pacific Ocean basin. Earth-Science Reviews, 2016, 154, 138-173.	4.0	83
104	Oceanic microplate formation records the onset of India–Eurasia collision. Earth and Planetary Science Letters, 2016, 433, 204-214.	1.8	27
105	Identifying tectonic niche environments of South American porphyry magmatism through geological time: a spatio-temporal data mining approach. ASEG Extended Abstracts, 2015, 2015, 1-4.	0.1	0
106	Semiautomatic fracture zone tracking. Geochemistry, Geophysics, Geosystems, 2015, 16, 2462-2472.	1.0	60
107	Building a machine learning classifier for iron ore prospectivity in the Yilgarn Craton. ASEG Extended Abstracts, 2015, 2015, 1-4.	0.1	0
108	Cenozoic surface uplift from south Western Australian rivers. ASEG Extended Abstracts, 2015, 2015, 1-4.	0.1	0

#	Article	IF	CITATIONS
109	Long-term interaction between mid-ocean ridges and mantle plumes. Nature Geoscience, 2015, 8, 479-483.	5.4	92
110	Plate Tectonics. , 2015, , 45-93.		12
111	A tectonic model reconciling evidence for the collisions between India, Eurasia and intra-oceanic arcs of the central-eastern Tethys. Gondwana Research, 2015, 28, 451-492.	3.0	165
112	Absolute plate motions since 130 Ma constrained by subduction zone kinematics. Earth and Planetary Science Letters, 2015, 418, 66-77.	1.8	53
113	Absolute plate motion of Africa around Hawaii-Emperor bend time. Geophysical Journal International, 2015, 201, 1743-1764.	1.0	20
114	Uncovering the relationship between subducting bathymetric ridges and volcanic chains with significant earthquakes using geophysical data mining. Australian Journal of Earth Sciences, 2015, 62, 171-180.	0.4	7
115	Deformation-related volcanism in the Pacific Ocean linked to the Hawaiian–Emperor bend. Nature Geoscience, 2015, 8, 393-397.	5.4	38
116	Ridge subduction sparked reorganization of the Pacific plateâ€mantle system 60–50 million years ago. Geophysical Research Letters, 2015, 42, 1732-1740.	1.5	170
117	Revision of Paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend. Geology, 2015, 43, 455-458.	2.0	31
118	Tectonic speed limits from plate kinematic reconstructions. Earth and Planetary Science Letters, 2015, 418, 40-52.	1.8	102
119	Provenance of plumes in global convection models. Geochemistry, Geophysics, Geosystems, 2015, 16, 1465-1489.	1.0	58
120	Prospectivity of Western Australian iron ore from geophysical data using a reject option classifier. Ore Geology Reviews, 2015, 71, 761-776.	1.1	7
121	Census of seafloor sediments in the world's ocean. Geology, 2015, 43, 795-798.	2.0	110
122	Influence of subduction history on South American topography. Earth and Planetary Science Letters, 2015, 430, 9-18.	1.8	67
123	Assessing the role of slab rheology in coupled plate-mantle convection models. Earth and Planetary Science Letters, 2015, 430, 191-201.	1.8	22
124	Full-fit reconstruction of the South China Sea conjugate margins. Tectonophysics, 2015, 661, 121-135.	0.9	39
125	The tectonic stress field evolution of India since the Oligocene. Gondwana Research, 2015, 28, 612-624.	3.0	30
126	Geologic and kinematic constraints on Late Cretaceous to mid Eocene plate boundaries in the southwest Pacific. Earth-Science Reviews, 2015, 140, 72-107.	4.0	75

#	Article	IF	CITATIONS
127	Paleophysiography of Ocean Basins. , 2015, , 1-15.		2
128	Data Driven Science. , 2015, , .		1
129	A suite of early Eocene (~ 55 Ma) climate model boundary conditions. Geoscientific Model Development, 2014, 7, 2077-2090.	1.3	71
130	The Cretaceous and Cenozoic tectonic evolution of Southeast Asia. Solid Earth, 2014, 5, 227-273.	1.2	234
131	Plate tectonic raster reconstruction in GPlates. Solid Earth, 2014, 5, 741-755.	1.2	14
132	Pacific plate slab pull and intraplate deformation in the early Cenozoic. Solid Earth, 2014, 5, 757-777.	1.2	19
133	Topographic asymmetry of the South Atlantic from global models of mantle flow and lithospheric stretching. Earth and Planetary Science Letters, 2014, 387, 107-119.	1.8	92
134	Cenozoic uplift of south Western Australia as constrained by river profiles. Tectonophysics, 2014, 622, 186-197.	0.9	20
135	Community infrastructure and repository for marine magnetic identifications. Geochemistry, Geophysics, Geosystems, 2014, 15, 1629-1641.	1.0	97
136	Circumâ€Arctic mantle structure and longâ€wavelength topography since the Jurassic. Journal of Geophysical Research: Solid Earth, 2014, 119, 7889-7908.	1.4	31
137	New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 2014, 346, 65-67.	6.0	1,074
138	Mapping crustal thickness using marine gravity data: Methods and uncertainties. Geophysics, 2014, 79, G27-G36.	1.4	52
139	Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs. Journal of Geodynamics, 2014, 73, 1-13.	0.7	93
140	Seawater chemistry driven by supercontinent assembly, breakup and dispersal: REPLY. Geology, 2014, 42, e335-e335.	2.0	1
141	Plate Motion. , 2014, , 1-10.		2
142	The tectonic evolution of the Arctic since Pangea breakup: Integrating constraints from surface geology and geophysics with mantle structure. Earth-Science Reviews, 2013, 124, 148-183.	4.0	153
143	Seawater chemistry driven by supercontinent assembly, breakup, and dispersal. Geology, 2013, 41, 907-910.	2.0	50
144	Oblique mid ocean ridge subduction modelling with the parallel fast multipole boundary element method. Computational Mechanics, 2013, 51, 455-463.	2.2	10

#	Article	IF	CITATIONS
145	Organization of the tectonic plates in the last 200 Myr. Earth and Planetary Science Letters, 2013, 373, 93-101.	1.8	36
146	The Moho: Boundary above upper mantle peridotites or lower crustal eclogites? A global review and new interpretations for passive margins. Tectonophysics, 2013, 609, 636-650.	0.9	46
147	Towards a predictive model for opal exploration using a spatio-temporal data mining approach. Australian Journal of Earth Sciences, 2013, 60, 217-229.	0.4	11
148	Convergence of tectonic reconstructions and mantle convection models for significant fluctuations in seafloor spreading. Earth and Planetary Science Letters, 2013, 383, 92-100.	1.8	48
149	Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers and Geosciences, 2013, 56, 76-82.	2.0	11
150	Revised tectonic evolution of the Eastern Indian Ocean. Geochemistry, Geophysics, Geosystems, 2013, 14, 1891-1909.	1.0	96
151	The breakup of East Gondwana: Assimilating constraints from Cretaceous ocean basins around India into a bestâ€fit tectonic model. Journal of Geophysical Research: Solid Earth, 2013, 118, 808-822.	1.4	207
152	Global sediment thickness data set updated for the Australianâ€Antarctic Southern Ocean. Geochemistry, Geophysics, Geosystems, 2013, 14, 3297-3305.	1.0	166
153	Early Indiaâ€Australia spreading history revealed by newly detected Mesozoic magnetic anomalies in the Perth Abyssal Plain. Journal of Geophysical Research: Solid Earth, 2013, 118, 3275-3284.	1.4	51
154	Forward modelling of oceanic lithospheric magnetization. Geophysical Journal International, 2013, 192, 951-962.	1.0	22
155	Full-fit reconstruction of the Labrador Sea and Baffin Bay. Solid Earth, 2013, 4, 461-479.	1.2	62
156	A review of observations and models of dynamic topography. Lithosphere, 2013, 5, 189-210.	0.6	277
157	Kinematics of the South Atlantic rift. Solid Earth, 2013, 4, 215-253.	1.2	286
158	Towards community-driven paleogeographic reconstructions: integrating open-access paleogeographic and paleobiology data with plate tectonics. Biogeosciences, 2013, 10, 1529-1541.	1.3	54
159	Macquarie Arc and the Lachlan Orocline hypothesis: Magnetic analysis and development of geologically constrained forward model of lithospheric magnetisation. ASEG Extended Abstracts, 2013, 2013, 1-3.	0.1	0
160	Australian paleo-stress fields and tectonic reactivation over the past 100 Ma. Australian Journal of Earth Sciences, 2012, 59, 13-28.	0.4	66
161	The link between great earthquakes and the subduction of oceanic fracture zones. Solid Earth, 2012, 3, 447-465.	1.2	27
162	Early to middle Miocene monsoon climate in Australia: REPLY. Geology, 2012, 40, e274-e274.	2.0	4

#	Article	IF	CITATIONS
163	Global paleo-lithospheric models for geodynamical analysis of plate reconstructions. Physics of the Earth and Planetary Interiors, 2012, 212-213, 106-113.	0.7	3
164	A global-scale plate reorganization event at 105â^'100Ma. Earth and Planetary Science Letters, 2012, 355-356, 283-298.	1.8	165
165	Testing absolute plate reference frames and the implications for the generation of geodynamic mantle heterogeneity structure. Earth and Planetary Science Letters, 2012, 317-318, 204-217.	1.8	53
166	Modeling the Miocene climatic optimum: Ocean circulation. Paleoceanography, 2012, 27, n/a-n/a.	3.0	88
167	Spherical dynamic models of topâ€down tectonics. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	17
168	Insights on the kinematics of the Indiaâ€Eurasia collision from global geodynamic models. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	74
169	Constraining the Jurassic extent of Greater India: Tectonic evolution of the West Australian margin. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	78
170	Influence of overriding plate geometry and rheology on subduction. Geochemistry, Geophysics, Geosystems, 2012, 13, .	1.0	24
171	The GPlates Geological Information Model and Markup Language. Geoscientific Instrumentation, Methods and Data Systems, 2012, 1, 111-134.	0.6	17
172	Plate tectonic reconstructions with continuously closing plates. Computers and Geosciences, 2012, 38, 35-42.	2.0	214
173	Dynamic topography and anomalously negative residual depth of the Argentine Basin. Gondwana Research, 2012, 22, 658-663.	3.0	22
174	Global continental and ocean basin reconstructions since 200Ma. Earth-Science Reviews, 2012, 113, 212-270.	4.0	1,459
175	An open-source software environment for visualizing and refining plate tectonic reconstructions using high-resolution geological and geophysical data sets. GSA Today, 2012, , 4-9.	1.1	68
176	A Spatio-Temporal Knowledge-Discovery Platform for Earth-Science Data. , 2011, , .		4
177	The tectonic fabric of the ocean basins. Journal of Geophysical Research, 2011, 116, .	3.3	123
178	Fullâ€fit, palinspastic reconstruction of the conjugate Australianâ€Antarctic margins. Tectonics, 2011, 30,	1.3	96
179	Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nature Geoscience, 2011, 4, 883-887.	5.4	99
180	Plate motion and mantle plumes. Nature, 2011, 475, 40-41.	13.7	13

R DIETMAR MÃ¹/4LLER

#	Article	IF	CITATIONS
181	Next-generation plate-tectonic reconstructions using GPlates. , 2011, , 95-114.		188
182	Mantle dynamics of continentwide Cenozoic subsidence and tilting of Australia. Lithosphere, 2011, 3, 311-316.	0.6	25
183	Dynamic subsidence of Eastern Australia during the Cretaceous. Gondwana Research, 2011, 19, 372-383.	3.0	45
184	Early to Middle Miocene monsoon climate in Australia. Geology, 2011, 39, 3-6.	2.0	56
185	Modeling the Miocene Climatic Optimum. Part I: Land and Atmosphere*. Journal of Climate, 2011, 24, 6353-6372.	1.2	56
186	Parallel Fast Multipole Boundary Element Method for crustal dynamics. IOP Conference Series: Materials Science and Engineering, 2010, 10, 012012.	0.3	1
187	Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nature Geoscience, 2010, 3, 870-875.	5.4	160
188	Sinking continents. Nature Geoscience, 2010, 3, 79-80.	5.4	5
189	Fragmentation of active continental plate margins owing to the buoyancy of the mantle wedge. Nature Geoscience, 2010, 3, 257-261.	5.4	55
190	The role of oceanic plateau subduction in the Laramide orogeny. Nature Geoscience, 2010, 3, 353-357.	5.4	290
191	Mapping Tertiary mid-ocean ridge subduction and slab window formation beneath Sundaland using seismic tomography. ASEG Extended Abstracts, 2010, 2010, 1-4.	0.1	Ο
192	Restoring the continent-ocean boundary: constraints from lithospheric stretching grids and tectonic reconstructions. ASEG Extended Abstracts, 2010, 2010, 1-4.	0.1	4
193	Comparing early to middle Miocene terrestrial climate simulations with geological data. , 2010, 6, 952-961.		28
194	A dynamic process for drowning carbonate reefs on the northeastern Australian margin. Geology, 2010, 38, 11-14.	2.0	37
195	Global pulsations of intraplate magmatism through the Cenozoic. Lithosphere, 2010, 2, 361-376.	0.6	35
196	Development of the Australianâ€Antarctic depth anomaly. Geochemistry, Geophysics, Geosystems, 2010, 11, .	1.0	18
197	Integrating deep Earth dynamics in paleogeographic reconstructions of Australia. Tectonophysics, 2010, 483, 135-150.	0.9	64
198	Sedimentary Basins Feeling the Heat from Below. Science, 2010, 329, 769-770.	6.0	8

R DIETMAR MüLLER

#	Article	IF	CITATIONS
199	Revised plate tectonic history of the west Australian margin reveals how the Gascoyne Terrane docked at West Burma. ASEG Extended Abstracts, 2010, 2010, 1-4.	0.1	0
200	Climate model sensitivity to changes in Miocene paleotopography. Australian Journal of Earth Sciences, 2009, 56, 1049-1059.	0.4	26
201	Long-wavelength tilting of the Australian continent since the Late Cretaceous. Earth and Planetary Science Letters, 2009, 278, 175-185.	1.8	58
202	Past and present seafloor age distributions and the temporal evolution of plate tectonic heat transport. Earth and Planetary Science Letters, 2009, 278, 233-242.	1.8	50
203	Climate model sensitivity to atmospheric CO2 concentrations for the middle Miocene. Global and Planetary Change, 2009, 67, 129-140.	1.6	35
204	Linking active margin dynamics to overriding plate deformation: Synthesizing geophysical images with geological data from the Norfolk Basin. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	14
205	EMAG2: A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite, airborne, and marine magnetic measurements. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	452
206	Mid-Cretaceous seafloor spreading pulse: Fact or fiction?. Geology, 2009, 37, 687-690.	2.0	105
207	Simulation of the Middle Miocene Climate Optimum. Geophysical Research Letters, 2009, 36, .	1.5	161
208	Stratigraphic architecture and evolution of the continental slope system in offshore Hainan, northern South China Sea. Marine Geology, 2008, 247, 129-144.	0.9	123
209	Increasing the usability and accessibility of geodynamic modelling tools to the geoscience community: UnderworldGUI. Visual Geosciences, 2008, 13, 25-36.	0.5	2
210	How supercontinents and superoceans affect seafloor roughness. Nature, 2008, 456, 938-941.	13.7	28
211	Age, spreading rates, and spreading asymmetry of the world's ocean crust. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	1,539
212	Global plate motion frames: Toward a unified model. Reviews of Geophysics, 2008, 46, .	9.0	531
213	Resolution of direction of oceanic magnetic lineations by the sixthâ€generation lithospheric magnetic field model from CHAMP satellite magnetic measurements. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	160
214	Middle Miocene tectonic boundary conditions for use in climate models. Geochemistry, Geophysics, Geosystems, 2008, 9, .	1.0	71
215	Long-Term Sea-Level Fluctuations Driven by Ocean Basin Dynamics. Science, 2008, 319, 1357-1362.	6.0	610
216	Convection models in the Kamchatka region using imposed plate motion and thermal histories. Journal of Geodynamics, 2008, 46, 1-9.	0.7	2

#	Article	IF	CITATIONS
217	Episodicity in back-arc tectonic regimes. Physics of the Earth and Planetary Interiors, 2008, 171, 265-279.	0.7	79
218	Subsidence in intracontinental basins due to dynamic topography. Physics of the Earth and Planetary Interiors, 2008, 171, 252-264.	0.7	82
219	The case for dynamic subsidence of the U.S. east coast since the Eocene. Geophysical Research Letters, 2008, 35, .	1.5	81
220	Cause and evolution of intraplate orogeny in Australia. Geology, 2008, 36, 495.	2.0	75
221	Major Australian-Antarctic Plate Reorganization at Hawaiian-Emperor Bend Time. Science, 2007, 318, 83-86.	6.0	264
222	Eocene to Miocene geometry of the West Antarctic Rift System. Australian Journal of Earth Sciences, 2007, 54, 1033-1045.	0.4	44
223	Effects of initial weakness on rift architecture. Geological Society Special Publication, 2007, 282, 443-455.	0.8	18
224	Sunda-Java trench kinematics, slab window formation and overriding plate deformation since the Cretaceous. Earth and Planetary Science Letters, 2007, 255, 445-457.	1.8	71
225	Plate Tectonics. , 2007, , 49-98.		7
226	Breakup and early seafloor spreading between India and Antarctica. Geophysical Journal International, 2007, 170, 151-169.	1.0	223
227	An Indian cheetah. Nature, 2007, 449, 795-796.	13.7	7
228	A graphical user interface for particle-in-cell finite element analysis of lithospheric deformation and mantle convection in two dimensions. Computers and Geosciences, 2007, 33, 1088-1093.	2.0	1
229	Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins. Earth-Science Reviews, 2007, 83, 177-203.	4.0	118
230	Mapping Seabed Geology by Ground-Truthed Textural Image/Neural Network Classification of Acoustic Backscatter Mosaics. Mathematical Geosciences, 2007, 39, 575-592.	0.9	6
231	Subsidence history and forming mechanism of anomalous tectonic subsidence in the Bozhong depression, Bohaiwan basin. Science in China Series D: Earth Sciences, 2007, 50, 1310-1318.	0.9	15
232	Controls on back-arc basin formation. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	1.0	301
233	Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography. Marine and Petroleum Geology, 2006, 23, 745-765.	1.5	242
234	Circum-Antarctic palaeobathymetry: Illustrated examples from Cenozoic to recent times. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 231, 158-168.	1.0	57

#	Article	IF	CITATIONS
235	Seismic stratigraphy of the Adare Trough area, Antarctica. Marine Geology, 2006, 230, 179-197.	0.9	7
236	Ellipsis 3D: A particle-in-cell finite-element hybrid code for modelling mantle convection and lithospheric deformation. Computers and Geosciences, 2006, 32, 1769-1779.	2.0	39
237	Finite-element modelling of contemporary and palaeo-intraplate stress using ABAQUSâ,,¢. Computers and Geosciences, 2005, 31, 297-307.	2.0	40
238	Late Jurassic rifting along the Australian North West Shelf: margin geometry and spreading ridge configuration. Australian Journal of Earth Sciences, 2005, 52, 27-39.	0.4	138
239	Paleostress field evolution of the Australian continent since the Eocene. Journal of Geophysical Research, 2005, 110, .	3.3	35
240	Geophysical evaluation of the enigmatic Bedout basement high, offshore northwestern Australia. Earth and Planetary Science Letters, 2005, 237, 264-284.	1.8	43
241	A Cenozoic diffuse alkaline magmatic province (DAMP) in the southwest Pacific without rift or plume origin. Geochemistry, Geophysics, Geosystems, 2005, 6, .	1.0	146
242	On the uncertainties in hot spot reconstructions and the significance of moving hot spot reference frames. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	237
243	Crustal structure and rift flank uplift of the Adare Trough, Antarctica. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	1.0	19
244	3-D finite-element modelling of deformation and stress associated with faulting: effect of inhomogeneous crustal structures. Geophysical Journal International, 2004, 157, 629-644.	1.0	44
245	Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension. Geochemistry, Geophysics, Geosystems, 2004, 5, .	1.0	43
246	Reconstructing the lost eastern Tethys Ocean Basin: Convergence history of the SE Asian margin and marine gateways. Geophysical Monograph Series, 2004, , 37-54.	0.1	46
247	An expression of Philippine Sea plate rotation: the Parece Vela and Shikoku Basins. Tectonophysics, 2004, 394, 69-86.	0.9	150
248	Modelling the Contemporary and Palaeo Stress Field of Australia using Finite-Element Modelling with Automatic Optimisation. Exploration Geophysics, 2004, 35, 236-241.	0.5	10
249	Catastrophic initiation of subduction following forced convergence across fracture zones. Earth and Planetary Science Letters, 2003, 212, 15-30.	1.8	381
250	Geodynamic implications of moving Indian Ocean hotspots. Earth and Planetary Science Letters, 2003, 215, 151-168.	1.8	84
251	Late Cretaceous–Cenozoic deformation of northeast Asia. Earth and Planetary Science Letters, 2002, 197, 273-286.	1.8	138
252	A recipe for microcontinent formation. Geology, 2001, 29, 203.	2.0	151

#	Article	IF	CITATIONS
253	Mesozoic/Cenozoic tectonic events around Australia. Geophysical Monograph Series, 2000, , 161-188.	0.1	51
254	Models of mantle convection incorporating plate tectonics: The Australian region since the Cretaceous. Geophysical Monograph Series, 2000, , 211-238.	0.1	14
255	Cenozoic motion between East and West Antarctica. Nature, 2000, 404, 145-150.	13.7	270
256	Absolute plate motion, mantle flow, and volcanism at the boundary between the Pacific and Indian Ocean mantle domains since 90 Ma. Geophysical Monograph Series, 2000, , 189-210.	0.1	8
257	Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth and Planetary Science Letters, 2000, 176, 73-89.	1.8	199
258	Evolution of the Louisiade triple junction. Journal of Geophysical Research, 1999, 104, 12927-12939.	3.3	73
259	Chapter 2 New constraints on the late cretaceous/tertiary plate tectonic evolution of the caribbean. Sedimentary Basins of the World, 1999, 4, 33-59.	0.2	86
260	Asymmetric sea-floor spreading caused by ridge–plume interactions. Nature, 1998, 396, 455-459.	13.7	98
261	Volcanic margin formation and Mesozoic rift propagators in the Cuvier Abyssal Plain off Western Australia. Journal of Geophysical Research, 1998, 103, 27135-27149.	3.3	65
262	New constraints on plate tectonic puzzle of the sw pacific. Eos, 1998, 79, 81-81.	0.1	10
263	Cretaceous Vertical Motion of Australia and the AustralianAntarctic Discordance. Science, 1998, 279, 1499-1504.	6.0	218
264	Seabed classification of the South Tasman Rise from SIMRAD EM12 backscatter data using artificial neural networks. Australian Journal of Earth Sciences, 1997, 44, 689-700.	0.4	14
265	Digital isochrons of the world's ocean floor. Journal of Geophysical Research, 1997, 102, 3211-3214.	3.3	744
266	Iceland hotspot track. Geology, 1994, 22, 311-314.	2.0	334
267	Deformation of the oceanic crust between the North American and South American Plates. Journal of Geophysical Research, 1993, 98, 8275-8291.	3.3	48
268	Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks. Geology, 1993, 21, 275.	2.0	529
269	Fracture zones in the North Atlantic from combined Geosat and Seasat data. Journal of Geophysical Research, 1992, 97, 3337-3350.	3.3	91
270	The tectonic evolution of the South Atlantic from Late Jurassic to present. Tectonophysics, 1991, 191, 27-53.	0.9	432

#	Article	IF	CITATIONS
271	Evolution of the Central Tertiary Basin of Spitsbergen: towards a synthesis of sediment and plate tectonic history. Palaeogeography, Palaeoclimatology, Palaeoecology, 1990, 80, 153-172.	1.0	43
272	The Opening of the Arctic Ocean. , 1990, , 29-62.		58
273	Tectonic fabric map of the ocean basins from satellite altimetry data. Tectonophysics, 1988, 155, 1-26.	0.9	57
274	Appendix 1 : Indian Ocean Plate Reconstructions Since the Late Jurassic. Geophysical Monograph Series, 0, , 471-475.	0.1	19
275	Evaluating global paleoshoreline models for the Cretaceous and Cenozoic. Australian Journal of Earth Sciences, 0, , 1-13.	0.4	8
276	Developing community-based scientific priorities and new drilling proposals in the southern Indian and southwestern Pacific oceans. Scientific Drilling, 0, 24, 61-70.	1.0	2