
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3992146/publications.pdf Version: 2024-02-01

IÃORC LAHANN

#	Article	IF	CITATIONS
1	Facile Fabrication of Anisotropic Multicompartmental Microfibers Using Charge Reversal Electrohydrodynamic Coâ€Jetting. Macromolecular Rapid Communications, 2022, 43, e2100560.	2.0	7
2	Supramolecular arrangement of protein in nanoparticle structures predicts nanoparticle tropism for neutrophils in acute lung inflammation. Nature Nanotechnology, 2022, 17, 86-97.	15.6	57
3	Coaxial electrospray of uniform polylactide core-shell microparticles for long-acting contraceptive. Journal of Controlled Release, 2022, 341, 634-645.	4.8	7
4	Protein Nanoparticles: Uniting the Power of Proteins with Engineering Design Approaches. Advanced Science, 2022, 9, e2104012.	5.6	40
5	Surfaces Decorated with Enantiomorphically Pure Polymer Nanohelices via Hierarchical Chirality Transfer across Multiple Length Scales. Advanced Materials, 2022, 34, e2108386.	11.1	9
6	Macrophageâ€Targeting Poly(lactideâ€ <i>co</i> â€glycolic acid) Nanoparticles Decorated with Multifunctional Brush Polymers. Particle and Particle Systems Characterization, 2022, 39, .	1.2	2
7	Systematic studies into uniform synthetic protein nanoparticles. Beilstein Journal of Nanotechnology, 2022, 13, 274-283.	1.5	2
8	A Bioreactor for 3D In Vitro Modeling of the Mechanical Stimulation of Osteocytes. Frontiers in Bioengineering and Biotechnology, 2022, 10, 797542.	2.0	1
9	Deep Learning Assisted Stratification of Amyloid Beta Mutants Using Drying Droplet Patterns. Advanced Materials, 2022, , 2110404.	11.1	3
10	Sharing of Strain Between Nanofiber Forests and Liquid Crystals Leads to Programmable Responses to Electric Fields. Advanced Functional Materials, 2022, 32, .	7.8	5
11	Nanoparticle Properties Influence Transendothelial Migration of Monocytes. Langmuir, 2022, 38, 5603-5616.	1.6	5
12	A library of Rhodamine6G-based pH-sensitive fluorescent probes with versatile <i>in vivo</i> and <i>in vitro</i> applications. RSC Chemical Biology, 2022, 3, 748-764.	2.0	3
13	SERS and Fluorescence-Active Multimodal Tessellated Scaffolds for Three-Dimensional Bioimaging. ACS Applied Materials & Interfaces, 2022, 14, 20708-20719.	4.0	15
14	Systemic Delivery of an Adjuvant CXCR4–CXCL12 Signaling Inhibitor Encapsulated in Synthetic Protein Nanoparticles for Glioma Immunotherapy. ACS Nano, 2022, 16, 8729-8750.	7.3	43
15	Directed Particle Transport via Reconfigurable Fiber Networks. Advanced Functional Materials, 2022, 32, .	7.8	2
16	BMP Geneâ€Immobilization to Dental Implants Enhances Bone Regeneration. Advanced Materials Interfaces, 2022, 9, .	1.9	3
17	Targeting gliomas with STAT3-silencing nanoparticles. Molecular and Cellular Oncology, 2021, 8, 1870647.	0.3	8
18	Overcoming biological barriers to improve solid tumor immunotherapy. Drug Delivery and Translational Research, 2021, 11, 2276-2301.	3.0	11

#	Article	IF	CITATIONS
19	Aligned Networks of Engineered Fibrillar Fibronectin Guide Cellular Orientation and Motility. Small Structures, 2021, 2, 2000137.	6.9	6
20	Performance Fabrics Obtained by <i>In Situ</i> Growth of Metal–Organic Frameworks in Electrospun Fibers. ACS Applied Materials & Interfaces, 2021, 13, 12491-12500.	4.0	31
21	3D jet writing of mechanically actuated tandem scaffolds. Science Advances, 2021, 7, .	4.7	28
22	Graph theoretical design of biomimetic aramid nanofiber composites as insulation coatings for implantable bioelectronics. MRS Bulletin, 2021, 46, 576-587.	1.7	5
23	Nanoparticle Tracking Analysis of Polymer Nanoparticles in Blood Plasma. Particle and Particle Systems Characterization, 2021, 38, 2100016.	1.2	10
24	Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(<i>p</i> -xylylene) Derivatives. ACS Applied Materials & Interfaces, 2021, 13, 43123-43133.	4.0	6
25	Printable Organic Electronic Materials for Precisely Positioned Cell Attachment. Langmuir, 2021, 37, 1874-1881.	1.6	2
26	Stepwise Cell Seeding on Tessellated Scaffolds to Study Sprouting Blood Vessels. Journal of Visualized Experiments, 2021, , .	0.2	0
27	Highâ€Throughput Scaffold System for Studying the Effect of Local Geometry and Topology on the Development and Orientation of Sprouting Blood Vessels. Advanced Functional Materials, 2020, 30, 1901335.	7.8	18
28	Multifunctional Synthetic Protein Nanoparticles via Reactive Electrojetting. Macromolecular Rapid Communications, 2020, 41, e2000425.	2.0	14
29	Ionicâ€Liquidâ€Based Safe Adjuvants. Advanced Materials, 2020, 32, e2002990.	11.1	22
30	Systemic brain tumor delivery of synthetic protein nanoparticles for glioblastoma therapy. Nature Communications, 2020, 11, 5687.	5.8	142
31	Electrokinetic characterization of synthetic protein nanoparticles. Beilstein Journal of Nanotechnology, 2020, 11, 1556-1567.	1.5	11
32	Programmable Delivery of Synergistic Cancer Drug Combinations Using Bicompartmental Nanoparticles. Advanced Healthcare Materials, 2020, 9, e2000564.	3.9	14
33	Chemical vapor deposited polymer layer for efficient passivation of planar perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 20122-20132.	5.2	27
34	On Demand Lightâ€Degradable Polymers Based on 9,10â€Dialkoxyanthracenes. Macromolecular Rapid Communications, 2020, 41, e2000314.	2.0	4
35	Enzyme Scaffolds with Hierarchically Defined Properties via 3D Jet Writing. Macromolecular Bioscience, 2020, 20, e2000154.	2.1	14
36	Effect of Nanoparticle Composition, Size, Shape, and Stiffness on Penetration Across the Blood–Brain Barrier. ACS Biomaterials Science and Engineering, 2020, 6, 4916-4928.	2.6	90

#	Article	IF	CITATIONS
37	Molecular Changes in Vaporâ€Based Polymer Thin Films Assessed by Characterization of Swelling Properties of Amineâ€Functionalized Poly―p â€xylylene. Macromolecular Chemistry and Physics, 2020, 221, 2000213.	1.1	0
38	Immunotherapy for gliomas: shedding light on progress in preclinical and clinical development. Expert Opinion on Investigational Drugs, 2020, 29, 659-684.	1.9	15
39	Variable-height channels for microparticle characterization and display. Lab on A Chip, 2020, 20, 2510-2519.	3.1	6
40	Enhanced mitochondrial fission suppresses signaling and metastasis in triple-negative breast cancer. Breast Cancer Research, 2020, 22, 60.	2.2	46
41	Emerging methods in therapeutics using multifunctional nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1625.	3.3	31
42	Cooperative Switching in Largeâ€Area Assemblies of Magnetic Janus Particles. Advanced Functional Materials, 2020, 30, 1907865.	7.8	13
43	Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000100.	1.6	25
44	Prospects of biological and synthetic pharmacotherapies for glioblastoma. Expert Opinion on Biological Therapy, 2020, 20, 305-317.	1.4	16
45	Engineered Fibrillar Fibronectin Networks as Threeâ€Dimensional Tissue Scaffolds. Advanced Materials, 2019, 31, e1904580.	11.1	34
46	Selective Localization of Hierarchically Assembled Particles to Plasma Membranes of Living Cells. Small Methods, 2019, 3, 1800408.	4.6	2
47	Carbohydrateâ€Based Polymer Brushes Prevent Viral Adsorption on Electrostatically Heterogeneous Interfaces. Macromolecular Rapid Communications, 2019, 40, e1800530.	2.0	7
48	Emerging Trends in Informationâ€Ðriven Engineering of Complex Biological Systems. Advanced Materials, 2019, 31, 1806898.	11.1	11
49	Constitutive release of CPS1 in bile and its role as a protective cytokine during acute liver injury. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9125-9134.	3.3	39
50	Soft Matter Technology at KIT: Chemical Perspective from Nanoarchitectures to Microstructures. Advanced Materials, 2019, 31, e1806334.	11.1	10
51	3D Jet Writing: Functional Microtissues Based on Tessellated Scaffold Architectures. Advanced Materials, 2018, 30, e1707196.	11.1	58
52	Progress of Multicompartmental Particles for Medical Applications. Advanced Healthcare Materials, 2018, 7, e1701319.	3.9	19
53	Synthesis and interfacial activity of PMMA/PtBMA Janus and homogeneous nanoparticles at water/oil interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536, 259-265.	2.3	13
54	Templated nanofiber synthesis via chemical vapor polymerization into liquid crystalline films. Science, 2018, 362, 804-808.	6.0	57

#	Article	IF	CITATIONS
55	Anisotropic Nanomaterials: Surface-Reactive Patchy Nanoparticles and Nanodiscs Prepared by Tandem Nanoprecipitation and Internal Phase Separation (Adv. Funct. Mater. 39/2018). Advanced Functional Materials, 2018, 28, 1870282.	7.8	0
56	Surface-initiated RAFT polymerization from vapor-based polymer coatings. Polymer, 2018, 150, 26-34.	1.8	10
57	Planar chiral [2.2]paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chemical Society Reviews, 2018, 47, 6947-6963.	18.7	156
58	Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nature Communications, 2018, 9, 2684.	5.8	247
59	Surfaceâ€Reactive Patchy Nanoparticles and Nanodiscs Prepared by Tandem Nanoprecipitation and Internal Phase Separation. Advanced Functional Materials, 2018, 28, 1800846.	7.8	33
60	Compartmentalized Microhelices Prepared via Electrohydrodynamic Cojetting. Advanced Science, 2018, 5, 1800024.	5.6	9
61	Work Function Modification via Combined Chargeâ€Based Throughâ€Space Interaction and Surface Interaction. Advanced Materials Interfaces, 2018, 5, 1800471.	1.9	4
62	pHâ€Responsive Aminomethyl Functionalized Poly(<i>p</i> â€xylylene) Coatings by Chemical Vapor Deposition Polymerization. Macromolecular Chemistry and Physics, 2017, 218, 1600521.	1.1	8
63	Backboneâ€Degradable Polymers Prepared by Chemical Vapor Deposition. Angewandte Chemie - International Edition, 2017, 56, 203-207.	7.2	27
64	Electrospun Polymer Fiber Lasers for Applications in Vapor Sensing. Advanced Optical Materials, 2017, 5, 1700248.	3.6	17
65	Polylutidines: Multifunctional Surfaces through Vaporâ€Based Polymerization of Substituted Pyridinophanes. Chemistry - A European Journal, 2017, 23, 13342-13350.	1.7	12
66	Examining Nanoparticle Adsorption on Electrostatically "Patchy―Glycopolymer Brushes Using Real-Time ̶-Potential Measurements. Langmuir, 2017, 33, 6322-6332.	1.6	2
67	Carious Lesions: Nanoparticleâ€Based Targeting and Detection of Microcavities (Adv. Healthcare Mater.) Tj ETQq1	10.7843	14 rgBT /O O
68	Needleless Electrohydrodynamic Cojetting of Bicompartmental Particles and Fibers from an Extended Fluid Interface. Macromolecular Rapid Communications, 2017, 38, 1600437.	2.0	18
69	Spatial Analysis of Metal–PLGA Hybrid Microstructures Using 3D SERS Imaging. Advanced Functional Materials, 2017, 27, 1701626.	7.8	37
70	Bioinstructive Coatings for Hematopoietic Stem Cell Expansion Based on Chemical Vapor Deposition Copolymerization. Biomacromolecules, 2017, 18, 3089-3098.	2.6	7
71	Microencapsulation of Live Cells in Synthetic Polymer Capsules. ACS Omega, 2017, 2, 2839-2847.	1.6	24
72	Nanoparticleâ€Based Targeting and Detection of Microcavities. Advanced Healthcare Materials, 2017, 6, 1600883.	3.9	8

#	Article	IF	CITATIONS
73	Vapor-based polymers: from films to nanostructures. Beilstein Journal of Nanotechnology, 2017, 8, 2219-2220.	1.5	5
74	Ultrasensitive In Situ Fluorescence Analysis using Modulated Fluorescence Interference Contrast at Nanostructured Polymer Surfaces. Advanced Materials, 2016, 28, 2367-2373.	11.1	8
75	Multigrowth Factor Delivery via Immobilization of Gene Therapy Vectors. Advanced Materials, 2016, 28, 3145-3151.	11.1	14
76	Engineering of nanoparticle size via electrohydrodynamic jetting. Bioengineering and Translational Medicine, 2016, 1, 82-93.	3.9	26
77	Dual Release Carriers for Cochlear Delivery. Advanced Healthcare Materials, 2016, 5, 94-100.	3.9	22
78	Snailâ€like Particles from Compartmentalized Microfibers. Macromolecular Rapid Communications, 2016, 37, 73-78.	2.0	6
79	Orientation Determination of a Hybrid Peptide Immobilized on CVD-Based Reactive Polymer Surfaces. Journal of Physical Chemistry C, 2016, 120, 19078-19086.	1.5	12
80	Corrosion of Concrete by Water-Induced Metal–Proton Exchange. Journal of Physical Chemistry C, 2016, 120, 22455-22459.	1.5	18
81	Persistence, distribution, and impact of distinctly segmented microparticles on cochlear health following <i>in vivo</i> infusion. Journal of Biomedical Materials Research - Part A, 2016, 104, 1510-1522.	2.1	11
82	Predictive Model for the Design of Zwitterionic Polymer Brushes: A Statistical Design of Experiments Approach. ACS Applied Materials & Interfaces, 2016, 8, 16595-16603.	4.0	11
83	Engineered Human Stem Cell Microenvironments. Current Stem Cell Reports, 2016, 2, 73-84.	0.7	5
84	Multi-luminescent switching of metal-free organic phosphors for luminometric detection of organic solvents. Chemical Science, 2016, 7, 2359-2363.	3.7	56
85	Cardiomyocyteâ€Driven Actuation in Biohybrid Microcylinders. Advanced Materials, 2015, 27, 4509-4515.	11.1	54
86	Uniform Coating of Microparticles using CVD Polymerization. Chemical Vapor Deposition, 2015, 21, 288-293.	1.4	4
87	CXCR4-Targeted Nanocarriers for Triple Negative Breast Cancers. Biomacromolecules, 2015, 16, 2412-2417.	2.6	30
88	Dual-Stimuli-Responsive Microparticles. ACS Applied Materials & amp; Interfaces, 2015, 7, 9744-9751.	4.0	44
89	Selective and Reversible Binding of Thiol-Functionalized Biomolecules on Polymers Prepared via Chemical Vapor Deposition Polymerization. Langmuir, 2015, 31, 5123-5129.	1.6	17
90	Long-circulating Janus nanoparticles made by electrohydrodynamic co-jetting for systemic drug delivery applications. Journal of Drug Targeting, 2015, 23, 750-758.	2.1	31

#	Article	IF	CITATIONS
91	Recent progress with multicompartmental nanoparticles. MRS Bulletin, 2014, 39, 251-257.	1.7	23
92	Design Strategies for Reducedâ€scale Surface Composition Gradients via <scp>CVD</scp> Copolymerization. Chemical Vapor Deposition, 2014, 20, 23-31.	1.4	3
93	Evaluating UV/H ₂ O ₂ exposure as a DEHP degradation treatment for plasticized PVC. Journal of Applied Polymer Science, 2014, 131, .	1.3	17
94	Chemically Orthogonal Threeâ€₽atch Microparticles. Angewandte Chemie - International Edition, 2014, 53, 2332-2338.	7.2	43
95	Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 8-11.	6.6	116
96	Derivation and Long-Term Culture of Transgene-Free Human Induced Pluripotent Stem Cells on Synthetic Substrates. Stem Cells Translational Medicine, 2014, 3, 1410-1417.	1.6	14
97	Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings. Biomaterials, 2014, 35, 9581-9590.	5.7	27
98	Orthogonal surface functionalization through bioactive vaporâ€based polymer coatings. Journal of Applied Polymer Science, 2014, 131, .	1.3	16
99	Surface engineering the cellular microenvironment via patterning and gradients. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 775-794.	2.4	45
100	Multimodal delivery of irinotecan from microparticles with two distinct compartments. Journal of Controlled Release, 2013, 172, 239-245.	4.8	46
101	Photoswitchable Particles for Onâ€Demand Degradation and Triggered Release. Small, 2013, 9, 3051-3057.	5.2	16
102	Janus-Core and Shell Microfibers. Langmuir, 2013, 29, 6181-6186.	1.6	36
103	Controlled Microstructuring of Janus Particles Based on a Multifunctional Poly(ethylene glycol). Macromolecular Rapid Communications, 2013, 34, 1554-1559.	2.0	12
104	A Facile Route Towards Inorganic Particles with Two Distinct Compartments Based on Electroâ€Hydrodynamic Coâ€Jetting. Particle and Particle Systems Characterization, 2013, 30, 936-939.	1.2	3
105	Spontaneous shape reconfigurations in multicompartmental microcylinders. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16057-16062.	3.3	90
106	Anisotropic Janus Catalysts for Spatially Controlled Chemical Reactions. Small, 2012, 8, 3116-3122.	5.2	46
107	Landing Rate Measurements to Detect Fibrinogen Adsorption to Non-fouling Surfaces. Cellular and Molecular Bioengineering, 2012, 5, 320-326.	1.0	10
108	Differentially Degradable Janus Particles for Controlled Release Applications. Macromolecular Rapid Communications, 2012, 33, 1178-1183.	2.0	63

#	Article	IF	CITATIONS
109	Multicompartmental Particles for Combined Imaging and siRNA Delivery. Advanced Materials, 2012, 24, 3850-3856.	11.1	71
110	Materials for Drug Delivery: Innovative Solutions to Address Complex Biological Hurdles. Advanced Materials, 2012, 24, 3717-3723.	11.1	90
111	Multifunctional polymer particles with distinct compartments. Journal of Materials Chemistry, 2011, 21, 8502.	6.7	73
112	Designable Biointerfaces Using Vapor-Based Reactive Polymers. Langmuir, 2011, 27, 34-48.	1.6	102
113	Recent advances with anisotropic particles. Current Opinion in Colloid and Interface Science, 2011, 16, 195-202.	3.4	222
114	Recent Progress in Nanoâ€biotechnology: Compartmentalized Micro―and Nanoparticles via Electrohydrodynamic Coâ€jetting. Small, 2011, 7, 1149-1156.	5.2	90
115	Macromol. Rapid Commun. 5/2011. Macromolecular Rapid Communications, 2011, 32, .	2.0	0
116	Bioâ€orthogonal "Doubleâ€Click―Chemistry Based on Multifunctional Coatings. Angewandte Chemie - International Edition, 2011, 50, 6522-6526.	7.2	78
117	Towards Designer Microparticles: Simultaneous Control of Anisotropy, Shape, and Size. Small, 2010, 6, 404-411.	5.2	138
118	Complex Protein Patterns in Drying Droplets. Materials Research Society Symposia Proceedings, 2010, 1273, 30101.	0.1	10
119	Anisotropic hybrid particles based on electrohydrodynamic co-jetting of nanoparticle suspensions. Physical Chemistry Chemical Physics, 2010, 12, 11894.	1.3	46
120	Vaporâ€Based Polymer Gradients. Macromolecular Rapid Communications, 2009, 30, 57-63.	2.0	40
121	Multicompartmental Microcylinders. Angewandte Chemie - International Edition, 2009, 48, 4589-4593.	7.2	113
122	Physical approaches to biomaterial design. Nature Materials, 2009, 8, 15-23.	13.3	1,266
123	Microstructured Materials Based on Multicompartmental Fibers. Journal of the American Chemical Society, 2009, 131, 6650-6651.	6.6	79
124	Dynamically switchable biointerfaces. Soft Matter, 2009, 5, 1555.	1.2	37
125	Environmentally Responsive Core/Shell Particles via Electrohydrodynamic Coâ€Jetting of Fully Miscible Polymer Solutions. Small, 2008, 4, 1756-1762.	5.2	35
126	Towards Multipotent Coatings: Chemical Vapor Deposition and Biofunctionalization of Carbonylâ€6ubstituted Copolymers. Macromolecular Rapid Communications, 2008, 29, 855-870.	2.0	34

#	Article	IF	CITATIONS
127	Spatioselective Modification of Bicompartmental Polymer Particles and Fibers via Huisgen 1,3â€Đipolar Cycloaddition. Macromolecular Rapid Communications, 2008, 29, 1655-1660.	2.0	53
128	Reactive Polymer Coatings for Biological Applications. ACS Symposium Series, 2008, , 283-298.	0.5	4
129	Fully monolithic CMOS nickel micromechanical resonator oscillator. Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 2008, , .	0.0	26
130	Water-Stable Biphasic Nanocolloids with Potential Use as Anisotropic Imaging Probes. Langmuir, 2007, 23, 5683-5688.	1.6	83
131	Short-term biocompatibility of biphasic nanocolloids with potential use as anisotropic imaging probes. Biomaterials, 2007, 28, 2446-2456.	5.7	84
132	REACTIVE POLYMER COATINGS FOR BIOMIMETIC SURFACE ENGINEERING. Chemical Engineering Communications, 2006, 193, 1457-1468.	1.5	34
133	Surface Modification of Confined Microgeometries via Vapor-Deposited Polymer Coatings. Journal of the American Chemical Society, 2006, 128, 374-380.	6.6	106
134	Triphasic Nanocolloids. Journal of the American Chemical Society, 2006, 128, 6796-6797.	6.6	143
135	Vapor-based polymer coatings for potential biomedical applications. Polymer International, 2006, 55, 1361-1370.	1.6	122
136	From Advanced Biomedical Coatings to Multiâ€Functionalized Biomaterials. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2006, 46, 347-375.	2.2	82
137	Reactive Polymer Coatings that "Click― Angewandte Chemie - International Edition, 2006, 45, 3360-3363.	7.2	179
138	The Synthesis of Brominated Tetrafluoro[2.2]paracyclophanes. European Journal of Organic Chemistry, 2006, 2006, 5499-5504.	1.2	3
139	Biphasic Janus particles with nanoscale anisotropy. Nature Materials, 2005, 4, 759-763.	13.3	676
140	Vapor-Based Synthesis of Poly[(4-formyl-p-xylylene)-co-(p-xylylene)] and Its Use for Biomimetic Surface Modifications. Macromolecular Rapid Communications, 2005, 26, 1794-1799.	2.0	65
141	Vapor-Based Polymerization of Functionalized [2.2]Paracyclophanes: A Unique Approach towards Surface-Engineered Microenvironments. , 2005, , 463-484.		7
142	A Reversibly Switching Surface. Science, 2003, 299, 371-374.	6.0	1,058
143	Reactive Polymer Coatings:Â A First Step toward Surface Engineering of Microfluidic Devices. Analytical Chemistry, 2003, 75, 2117-2122.	3.2	187
144	Fabrication of elastomeric stamps with polymer-reinforced sidewalls via chemically selective vapor deposition polymerization of poly(p-xylylene). Applied Physics Letters, 2003, 83, 4250-4252.	1.5	34

#	Article	IF	CITATIONS
145	Surface-Initiated Ring-Opening Polymerization ofε-Caprolactone from a Patterned Poly(hydroxymethyl-p-xylylene). Macromolecular Rapid Communications, 2001, 22, 968-971.	2.0	62
146	Synthesis of Amino[2.2]paracyclophanes-Beneficial Monomers for Bioactive Coating of Medical Implant Materials. Angewandte Chemie - International Edition, 2001, 40, 726-728.	7.2	67
147	Dendrimer Synthesis and Functionalization by Click Chemistry for Biomedical Applications. , 0, , 177-193.		8
148	Functional Nanomaterials using the Cu-Catalyzed Huisgen Cycloaddition Reaction. , 0, , 255-289.		1
149	Click Chemistry in Protein Engineering, Design, Detection and Profiling. , 0, , 309-325.		2
150	Copper-Free Click Chemistry. , 0, , 29-51.		5
151	Solid and Hollow Poly(<i>p</i> -xylylene) Particles Synthesis <i>via</i> Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials, 0, , .	3.2	4