Patricia H Janak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3992005/publications.pdf

Version: 2024-02-01

128 11,667 57 100
papers citations h-index g-index

142 142 10186
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	In memoriam—Joe L. Martinez, Jr. (1944–2020). Neuropsychopharmacology, 2021, 46, 1057-1057.	2.8	O
2	Optogenetic induction of orbitostriatal long-term potentiation in the dorsomedial striatum elicits a persistent reduction of alcohol-seeking behavior in rats. Neuropharmacology, 2021, 191, 108560.	2.0	12
3	Consolidating the Circuit Model for Addiction. Annual Review of Neuroscience, 2021, 44, 173-195.	5.0	39
4	Dorsomedial Striatal Activity Tracks Completion of Behavioral Sequences in Rats. ENeuro, 2021, 8, ENEURO.0279-21.2021.	0.9	8
5	Maintained goal-directed control with overtraining on ratio schedules. Learning and Memory, 2021, 28, 435-439.	0.5	7
6	A quantitative reward prediction error signal in the ventral pallidum. Nature Neuroscience, 2020, 23, 1267-1276.	7.1	56
7	Reward activity in ventral pallidum tracks satiety-sensitive preference and drives choice behavior. Science Advances, 2020, 6, .	4.7	20
8	Dopaminergic Regulation of Nucleus Accumbens Cholinergic Interneurons Demarcates Susceptibility to Cocaine Addiction. Biological Psychiatry, 2020, 88, 746-757.	0.7	30
9	Occasion setters attain incentive motivational value: implications for contextual influences on reward-seeking. Learning and Memory, 2019, 26, 291-298.	0.5	11
10	Recruitment and disruption of ventral pallidal cue encoding during alcohol seeking. European Journal of Neuroscience, 2019, 50, 3428-3444.	1.2	16
11	How Does Drug Use Shift the Balance Between Model-Based and Model-Free Control of Decision Making?. Biological Psychiatry, 2019, 85, 886-888.	0.7	4
12	Decreases in Cued Reward Seeking After Reward-Paired Inhibition of Mesolimbic Dopamine. Neuroscience, 2019, 412, 259-269.	1.1	17
13	Ventral Tegmental Dopamine Neurons Participate in Reward Identity Predictions. Current Biology, 2019, 29, 93-103.e3.	1.8	89
14	Distinct recruitment of dorsomedial and dorsolateral striatum erodes with extended training. ELife, 2019, 8, .	2.8	60
15	Inhibiting Mesolimbic Dopamine Neurons Reduces the Initiation and Maintenance of Instrumental Responding. Neuroscience, 2018, 372, 306-315.	1.1	37
16	Defining the place of habit in substance use disorders. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2018, 87, 22-32.	2.5	52
17	Brain circuits of compulsive drug addiction identified. Nature, 2018, 564, 349-350.	13.7	3
18	Ventral pallidum encodes relative reward value earlier and more robustly than nucleus accumbens. Nature Communications, 2018, 9, 4350.	5.8	91

#	Article	IF	Citations
19	Ventral pallidal encoding of reward-seeking behavior depends on the underlying associative structure. ELife, 2018, 7, .	2.8	37
20	Stressing the other paraventricular nucleus. Nature Neuroscience, 2018, 21, 901-902.	7.1	2
21	Dopamine neurons create Pavlovian conditioned stimuli with circuit-defined motivational properties. Nature Neuroscience, 2018, 21, 1072-1083.	7.1	286
22	Longâ€lasting contribution of dopamine in the nucleus accumbens core, but not dorsal lateral striatum, to signâ€tracking. European Journal of Neuroscience, 2017, 46, 2047-2055.	1.2	48
23	Optogenetic activation of amygdala projections to nucleus accumbens can arrest conditioned and unconditioned alcohol consummatory behavior. Neuroscience, 2017, 360, 106-117.	1.1	67
24	Error-Driven Learning: Dopamine Signals More Than Value-Based Errors. Current Biology, 2017, 27, R1321-R1324.	1.8	37
25	Lever Insertion as a Salient Stimulus Promoting Insensitivity to Outcome Devaluation. Frontiers in Integrative Neuroscience, 2017, 11, 23.	1.0	43
26	Changes in the Influence of Alcohol-Paired Stimuli on Alcohol Seeking across Extended Training. Frontiers in Psychiatry, 2016, 7, 169.	1.3	30
27	Nucleus accumbens core and shell are differentially involved in general and outcomeâ€specific forms of Pavlovianâ€instrumental transfer with alcohol and sucrose rewards. European Journal of Neuroscience, 2016, 43, 1229-1236.	1.2	40
28	Habitual Alcohol Seeking: Neural Bases and Possible Relations to Alcohol Use Disorders. Alcoholism: Clinical and Experimental Research, 2016, 40, 1380-1389.	1.4	91
29	Ventral Pallidum Neurons Encode Incentive Value and Promote Cue-Elicited Instrumental Actions. Neuron, 2016, 90, 1165-1173.	3.8	107
30	Long-range orbitofrontal and amygdala axons show divergent patterns of maturation in the frontal cortex across adolescence. Developmental Cognitive Neuroscience, 2016, 18, 113-120.	1.9	40
31	A Transgenic Rat for Investigating the Anatomy and Function of Corticotrophin Releasing Factor Circuits. Frontiers in Neuroscience, 2015, 9, 487.	1.4	107
32	Nucleus Accumbens and Posterior Amygdala Mediate Cue-Triggered Alcohol Seeking and Suppress Behavior During the Omission of Alcohol-Predictive Cues. Neuropsychopharmacology, 2015, 40, 2555-2565.	2.8	60
33	From circuits to behaviour in the amygdala. Nature, 2015, 517, 284-292.	13.7	1,508
34	Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140210.	1.8	30
35	Alcohol-Seeking Triggered by Discrete Pavlovian Cues is Invigorated by Alcohol Contexts and Mediated by Glutamate Signaling in the Basolateral Amygdala. Neuropsychopharmacology, 2015, 40, 2801-2812.	2.8	55
36	Dopamine Prediction Errors in Reward Learning and Addiction: From Theory to Neural Circuitry. Neuron, 2015, 88, 247-263.	3.8	281

#	Article	IF	Citations
37	Optogenetics: 10 years after ChR2 in neuronsâ€"views from the community. Nature Neuroscience, 2015, 18, 1202-1212.	7.1	122
38	Habitual responding for alcohol depends upon both AMPA and D2 receptor signaling in the dorsolateral striatum. Frontiers in Behavioral Neuroscience, 2014, 8, 301.	1.0	92
39	Extrasynaptic GABAA Receptors and Alcohol. , 2014, , 251-265.		0
40	Nucleus Accumbens Plasticity Underlies Multifaceted Behavioral Changes Associated with Addiction. Biological Psychiatry, 2014, 75, 92-93.	0.7	3
41	<scp>P</scp> avlovianâ€conditioned alcoholâ€seeking behavior in rats is invigorated by the interaction between discrete and contextual alcohol cues: implications for relapse. Brain and Behavior, 2014, 4, 278-289.	1.0	37
42	Positive Reinforcement Mediated by Midbrain Dopamine Neurons Requires D1 and D2 Receptor Activation in the Nucleus Accumbens. PLoS ONE, 2014, 9, e94771.	1.1	119
43	Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Research, 2013, 1511, 46-64.	1.1	41
44	<scp>BDNF</scp> â€mediated regulation of ethanol consumption requires the activation of the <scp>MAP</scp> kinase pathway and protein synthesis. European Journal of Neuroscience, 2013, 37, 607-612.	1.2	61
45	Safety Encoding in the Basal Amygdala. Journal of Neuroscience, 2013, 33, 3744-3751.	1.7	119
46	A causal link between prediction errors, dopamine neurons and learning. Nature Neuroscience, 2013, 16, 966-973.	7.1	723
47	Disruption of alcohol-related memories by mTORC1 inhibition prevents relapse. Nature Neuroscience, 2013, 16, 1111-1117.	7.1	165
48	The Orbitofrontal Cortex as Part of a Hierarchical Neural System Mediating Choice between Two Good Options. Journal of Neuroscience, 2013, 33, 15989-15998.	1.7	34
49	The Potent Effect of Environmental Context on Relapse to Alcohol- Seeking After Extinction. The Open Addiction Journal, 2013, 3, 76-87.	0.5	37
50	Compound Stimulus Presentation and the Norepinephrine Reuptake Inhibitor Atomoxetine Enhance Long-Term Extinction of Cocaine-Seeking Behavior. Neuropsychopharmacology, 2012, 37, 975-985.	2.8	32
51	The Small G Protein H-Ras in the Mesolimbic System Is a Molecular Gateway to Alcohol-Seeking and Excessive Drinking Behaviors. Journal of Neuroscience, 2012, 32, 15849-15858.	1.7	36
52	Microinjection of Glycine into the Ventral Tegmental Area Selectively Decreases Ethanol Consumption. Journal of Pharmacology and Experimental Therapeutics, 2012, 341, 196-204.	1.3	39
53	Habitual Alcohol Seeking: Time Course and the Contribution of Subregions of the Dorsal Striatum. Biological Psychiatry, 2012, 72, 389-395.	0.7	426
54	Responses to ethanol in C57BL/6 versus C57BL/6 $ ilde{A}-$ 129 hybrid mice. Brain and Behavior, 2012, 2, 22-31.	1.0	23

#	Article	IF	Citations
55	Alpha4 subunitâ€containing GABA _A receptors in the accumbens shell contribute to the reinforcing effects of alcohol. Addiction Biology, 2012, 17, 309-321.	1.4	31
56	Deepened extinction following compound stimulus presentation: Noradrenergic modulation. Learning and Memory, $2011,18,1\text{-}10.$	0.5	48
57	Recombinase-Driver Rat Lines: Tools, Techniques, and Optogenetic Application to Dopamine-Mediated Reinforcement. Neuron, 2011, 72, 721-733.	3.8	593
58	Extrasynaptic \hat{l} -containing GABA _A receptors in the nucleus accumbens dorsomedial shell contribute to alcohol intake. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4459-4464.	3.3	80
59	Similar Neural Activity during Fear and Disgust in the Rat Basolateral Amygdala. PLoS ONE, 2011, 6, e27797.	1.1	13
60	Methylphenidate facilitates learning-induced amygdala plasticity. Nature Neuroscience, 2010, 13, 475-481.	7.1	69
61	Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. European Journal of Neuroscience, 2010, 31, 1312-1321.	1.2	126
62	Dissociable Roles of the Medial Prefrontal Cortex and Nucleus Accumbens Core in Goal-Directed Actions for Differential Reward Magnitude. Cerebral Cortex, 2010, 20, 2884-2899.	1.6	35
63	Amygdala Neural Encoding of the Absence of Reward during Extinction. Journal of Neuroscience, 2010, 30, 116-125.	1.7	75
64	Separable Roles of the Nucleus Accumbens Core and Shell in Context- and Cue-Induced Alcohol-Seeking. Neuropsychopharmacology, 2010, 35, 783-791.	2.8	150
65	Altered glutamatergic neurotransmission in the striatum regulates ethanol sensitivity and intake in mice lacking ENT1. Behavioural Brain Research, 2010, 208, 636-642.	1.2	64
66	The Potent Effect of Environmental Context on Relapse to Alcohol- Seeking After Extinction~!2009-10-07~!2010-02-08~!2010-04-09~!. The Open Addiction Journal, 2010, 3, 76-87.	0.5	47
67	α4-Containing GABA _A Receptors in the Nucleus Accumbens Mediate Moderate Intake of Alcohol. Journal of Neuroscience, 2009, 29, 543-549.	1.7	62
68	Endogenous BDNF in the Dorsolateral Striatum Gates Alcohol Drinking. Journal of Neuroscience, 2009, 29, 13494-13502.	1.7	167
69	Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15031-15036.	3.3	162
70	Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons. Journal of Neurodevelopmental Disorders, 2009, 1, 224-236.	1.5	36
71	Ethanol seeking triggered by environmental context is attenuated by blocking dopamine D1 receptors in the nucleus accumbens core and shell in rats. Psychopharmacology, 2009, 207, 303-314.	1.5	95
72	GDNF is an Endogenous Negative Regulator of Ethanolâ€Mediated Reward and of Ethanol Consumption After a Period of Abstinence. Alcoholism: Clinical and Experimental Research, 2009, 33, 1012-1024.	1.4	40

#	Article	IF	Citations
73	Escalating ethanol intake is associated with altered corticostriatal <i>BDNF</i> expression. Journal of Neurochemistry, 2009, 109, 1459-1468.	2.1	105
74	Blockade of ethanol reward by the kappa opioid receptor agonist U50,488H. Alcohol, 2009, 43, 359-365.	0.8	61
75	The nucleus accumbens core and shell are critical for the expression, but not the consolidation, of Pavlovian conditioned approach. Behavioural Brain Research, 2009, 200, 22-32.	1.2	82
76	Cabergoline Decreases Alcohol Drinking and Seeking Behaviors Via Glial Cell Line-Derived Neurotrophic Factor. Biological Psychiatry, 2009, 66, 146-153.	0.7	40
77	Rapid strengthening of thalamo-amygdala synapses mediates cue–reward learning. Nature, 2008, 453, 1253-1257.	13.7	194
78	Reinstated ethanolâ€seeking in rats is modulated by environmental context and requires the nucleus accumbens core. European Journal of Neuroscience, 2008, 28, 2288-2298.	1.2	73
79	PRECLINICAL STUDY: A microdialysis study of extracellular levels of acamprosate and naltrexone in the rat brain following acute and repeated administration. Addiction Biology, 2008, 13, 70-79.	1.4	17
80	Context-Induced Relapse of Conditioned Behavioral Responding to Ethanol Cues in Rats. Biological Psychiatry, 2008, 64, 203-210.	0.7	84
81	Dynorphin is a downstream effector of striatal BDNF regulation of ethanol intake. FASEB Journal, 2008, 22, 2393-2404.	0.2	86
82	Nucleus accumbens AGS3 expression drives ethanol seeking through $G\hat{I}^2\hat{I}^3$. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12533-12538.	3.3	73
83	GDNF is a fast-acting potent inhibitor of alcohol consumption and relapse. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 8114-8119.	3.3	117
84	Inactivation of the Lateral But Not Medial Dorsal Striatum Eliminates the Excitatory Impact of Pavlovian Stimuli on Instrumental Responding. Journal of Neuroscience, 2007, 27, 13977-13981.	1.7	109
85	Amygdala Neurons Differentially Encode Motivation and Reinforcement. Journal of Neuroscience, 2007, 27, 3937-3945.	1.7	111
86	Ethanol Induces Long-Term Facilitation of NR2B-NMDA Receptor Activity in the Dorsal Striatum: Implications for Alcohol Drinking Behavior. Journal of Neuroscience, 2007, 27, 3593-3602.	1.7	169
87	Post-training, but not post-reactivation, administration of amphetamine and anisomycin modulates Pavlovian conditioned approach. Neurobiology of Learning and Memory, 2007, 87, 644-658.	1.0	43
88	Essential function of HIPK2 in TGF \hat{i}^2 -dependent survival of midbrain dopamine neurons. Nature Neuroscience, 2007, 10, 77-86.	7.1	126
89	General and outcomeâ€specific forms of Pavlovianâ€instrumental transfer: the effect of shifts in motivational state and inactivation of the ventral tegmental area. European Journal of Neuroscience, 2007, 26, 3141-3149.	1.2	183
90	Ethanol-Associated Cues Produce General Pavlovian-Instrumental Transfer. Alcoholism: Clinical and Experimental Research, 2007, 31, 766-774.	1.4	149

#	Article	IF	Citations
91	Acamprosate attenuates cocaine- and cue-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology, 2007, 195, 397-406.	1.5	24
92	Context is a trigger for relapse to alcohol. Behavioural Brain Research, 2006, 167, 150-155.	1.2	130
93	Post-training and post-reactivation administration of amphetamine enhances morphine conditioned place preference. Behavioural Brain Research, 2006, 171, 329-337.	1.2	33
94	Alcohol seeking in C57BL/6 mice induced by conditioned cues and contexts in the extinction-reinstatement model. Alcohol, 2006, 38, 81-88.	0.8	52
95	Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology, 2006, 186, 122-132.	1.5	168
96	The Dopamine D3 Receptor Is Part of a Homeostatic Pathway Regulating Ethanol Consumption. Journal of Neuroscience, 2006, 26, 1457-1464.	1.7	99
97	The mGluR5 Antagonist 6-Methyl-2-(phenylethynyl)pyridine Decreases Ethanol Consumption via a Protein Kinase Cϵ-Dependent Mechanism. Molecular Pharmacology, 2005, 67, 349-355.	1.0	119
98	Glial Cell Line-Derived Neurotrophic Factor Mediates the Desirable Actions of the Anti-Addiction Drug Ibogaine against Alcohol Consumption. Journal of Neuroscience, 2005, 25, 619-628.	1.7	155
99	GDNF and Addiction. Reviews in the Neurosciences, 2005, 16, 277-85.	1.4	34
100	RACK1 and Brain-Derived Neurotrophic Factor: A Homeostatic Pathway That Regulates Alcohol Addiction. Journal of Neuroscience, 2004, 24, 10542-10552.	1.7	228
101	Ethanol Operant Self-Administration in Rats Is Regulated by Adenosine A2 Receptors. Alcoholism: Clinical and Experimental Research, 2004, 28, 1308-1316.	1.4	81
102	Effect of the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant properties of cocaine, d-amphetamine, and the dopamine reuptake inhibitor GBR12909 in mice. Psychopharmacology, 2004, 174, 266-73.	1.5	62
103	Dynamics of neural coding in the accumbens during extinction and reinstatement of rewarded behavior. Behavioural Brain Research, 2004, 154, 125-135.	1.2	33
104	Comparison of reinstatement of ethanol- and sucrose-seeking by conditioned stimuli and priming injections of allopregnanolone after extinction in rats. Psychopharmacology, 2003, 168, 222-228.	1.5	68
105	Comparison of the effects of allopregnanolone with direct GABAergic agonists on ethanol self-administration with and without concurrently available sucrose. Alcohol, 2003, 30, 1-7.	0.8	113
106	Fyn Kinase and NR2B-Containing NMDA Receptors Regulate Acute Ethanol Sensitivity But Not Ethanol Intake or Conditioned Reward. Alcoholism: Clinical and Experimental Research, 2003, 27, 1736-1742.	1.4	88
107	$\hat{l}^2\hat{l}^3$ Dimers Mediate Synergy of Dopamine D2 and Adenosine A2 Receptor-Stimulated PKA Signaling and Regulate Ethanol Consumption. Cell, 2002, 109, 733-743.	13.5	126
108	Multichannel Neural Ensemble Recording During Alcohol Self- Administration. Frontiers in Neuroscience, 2002, , .	0.0	4

#	Article	IF	Citations
109	In Vivo Extracellular Recording of Striatal Neurons in the Awake Rat Following Unilateral 6-Hydroxydopamine Lesions. Experimental Neurology, 2001, 171, 72-83.	2.0	68
110	Neurosteroids Mediate Pharmacological Effects of Ethanol: A New Mechanism of Ethanol Action?. Alcoholism: Clinical and Experimental Research, 1999, 23, 1933-1940.	1.4	122
111	Mesolimbic Neuronal Activity across Behavioral States. Annals of the New York Academy of Sciences, 1999, 877, 91-112.	1.8	41
112	Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self-administration. Brain Research, 1999, 817, 172-184.	1.1	55
113	Ethanol Action on Neural Networks Studied with Multineuron Recording in Freely Moving Animals. Alcoholism: Clinical and Experimental Research, 1998, 22, 10-22.	1.4	18
114	The Reinforcing Effects of Ethanol Are Altered by the Endogenous Neurosteroid, Allopregnanolone. Alcoholism: Clinical and Experimental Research, 1998, 22, 1106-1112.	1.4	104
115	Comparison of Mesocorticolimbic Neuronal Responses During Cocaine and Heroin Self-Administration in Freely Moving Rats. Journal of Neuroscience, 1998, 18, 3098-3115.	1.7	136
116	Ethanol Action on Neural Networks Studied with Multineuron Recording in Freely Moving Animals. , 1998, 22, 10.		2
117	Rapid decay of cocaine-induced behavioral sensitization of locomotor behavior. Behavioural Brain Research, 1997, 88, 195-199.	1.2	5
118	Neuronal responses in prefrontal cortex and nucleus accumbens during heroin self-administration in freely moving rats. Brain Research, 1997, 754, 12-20.	1.1	66
119	Neuronal Reflections of Perception and Memory: Advanced Reports. PsycCritiques, 1996, 41, 373-374.	0.0	0
120	[Leu]Enkephalin Enhances Active Avoidance Conditioning in Rats and Mice. Neuropsychopharmacology, 1994, 10, 53-60.	2.8	11
121	From Behavior to Brain: How Behavior Guides Reductionistic Analysis. PsycCritiques, 1993, 38, 1183-1185.	0.0	0
122	Uptake and metabolism of [3H]-Leu-enkephalin following either its intraperitoneal or subcutaneous administration to mice. Peptides, 1992, 13, 551-555.	1.2	4
123	Cocaine and amphetamine facilitate retention of jump-up responding in rats. Pharmacology Biochemistry and Behavior, 1992, 41, 837-840.	1.3	24
124	Cocaine enhances one-way avoidance responding in mice. Pharmacology Biochemistry and Behavior, 1992, 41, 851-854.	1.3	9
125	Cocaine enhances retention of avoidance conditioning in rats. Psychopharmacology, 1992, 106, 383-387.	1.5	23
126	Only tyrosine-containing metabolites of [Leu]Enkephalin impair active avoidance conditioning in mice. Pharmacology Biochemistry and Behavior, 1990, 37, 655-659.	1.3	12

#	Article	lF	CITATIONS
127	Two Metabolites of [Leu]enkephalin, Tyr-Gly and Tyr-Gly-Gly-Phe, Impair Acquisition of an Active Avoidance Response in Mice. Psychological Science, 1990, 1, 205-208.	1.8	8
128	Behavioral assessment of forgetting in aged rodents and its relationship to peripheral sympathetic function. Neurobiology of Aging, 1988, 9, 697-708.	1.5	30