
Melanie Haffner-Luntzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3991695/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction between bone and immune cells: Implications for postmenopausal osteoporosis. Seminars in Cell and Developmental Biology, 2022, 123, 14-21.	2.3	210
2	A novel in vitro assay to study chondrocyte-to-osteoblast transdifferentiation. Endocrine, 2022, 75, 266-275.	1.1	5
3	C6b-B regulates an essential step in megakaryocyte maturation. Blood Advances, 2022, 6, 3155-3161.	2.5	11
4	Inhibition of Cdk5 Ameliorates Skeletal Bone Loss in Glucocorticoid-Treated Mice. Biomedicines, 2022, 10, 404.	1.4	3
5	Bone Mass and Osteoblast Activity Are Sex-Dependent in Mice Lacking the Estrogen Receptor α in Chondrocytes and Osteoblast Progenitor Cells. International Journal of Molecular Sciences, 2022, 23, 2902.	1.8	6
6	Osteoblast lineage <i>Sod2</i> deficiency leads to an osteoporosis-like phenotype in mice. DMM Disease Models and Mechanisms, 2022, 15, .	1.2	16
7	Mast Cells Drive Systemic Inflammation and Compromised Bone Repair After Trauma. Frontiers in Immunology, 2022, 13, 883707.	2.2	8
8	Correction: Steppe et al. Bone Mass and Osteoblast Activity Are Sex-Dependent in Mice Lacking the Estrogen Receptor α in Chondrocytes and Osteoblast Progenitor Cells. Int. J. Mol. Sci. 2022, 23, 2902. International Journal of Molecular Sciences, 2022, 23, 6020.	1.8	2
9	Increased Presence of Complement Factors and Mast Cells in Alveolar Bone and Tooth Resorption. International Journal of Molecular Sciences, 2021, 22, 2759.	1.8	3
10	Systemic and local cardiac inflammation after experimental long bone fracture, traumatic brain injury and combined trauma in mice. Journal of Orthopaedic Translation, 2021, 28, 39-46.	1.9	7
11	Bursa-Derived Cells Show a Distinct Mechano-Response to Physiological and Pathological Loading in vitro. Frontiers in Cell and Developmental Biology, 2021, 9, 657166.	1.8	3
12	Experimental agents to improve fracture healing: utilizing the WNT signaling pathway. Injury, 2021, 52, S44-S48.	0.7	12
13	Differences in Fracture Healing Between Female and Male C57BL/6J Mice. Frontiers in Physiology, 2021, 12, 712494.	1.3	28
14	Estrogen Receptor α Signaling in Osteoblasts is Required for Mechanotransduction in Bone Fracture Healing. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782355.	2.0	8
15	Systemic and Cardiac Alterations After Long Bone Fracture. Shock, 2020, 54, 761-773.	1.0	12
16	Effects of Estrogen Receptor and Wnt Signaling Activation on Mechanically Induced Bone Formation in a Mouse Model of Postmenopausal Bone Loss. International Journal of Molecular Sciences, 2020, 21, 8301.	1.8	18
17	Influence of Low-Magnitude High-Frequency Vibration on Bone Cells and Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 595139.	2.0	20
18	Reaming of femoral fractures with different reaming irrigator aspirator systems shows distinct effects on cardiac function after experimental polytrauma. Journal of Orthopaedic Research, 2020, 38, 2608-2618.	1.2	3

Melanie Haffner-Luntzer

#	Article	IF	CITATIONS
19	A novel mouse model to study fracture healing of the proximal femur. Journal of Orthopaedic Research, 2020, 38, 2131-2138.	1.2	8
20	Piezo1 Inactivation in Chondrocytes Impairs Trabecular Bone Formation. Journal of Bone and Mineral Research, 2020, 36, 369-384.	3.1	55
21	Pregnancy and lactation, a challenge for the skeleton. Endocrine Connections, 2020, 9, R143-R157.	0.8	35
22	Animal models for studying metaphyseal bone fracture healing. , 2020, 40, 172-188.		10
23	The Role of Mast Cells in Bone Metabolism and Bone Disorders. Frontiers in Immunology, 2020, 11, 163.	2.2	50
24	Mast Cells Trigger Disturbed Bone Healing in Osteoporotic Mice. Journal of Bone and Mineral Research, 2020, 37, 137-151.	3.1	16
25	Tissue damage in the heart after cardiac arrest induced by asphyxia and hemorrhage in newborn pigs. Pediatric Research, 2019, 86, 709-718.	1.1	8
26	Review of Animal Models of Comorbidities in Fractureâ€Healing Research. Journal of Orthopaedic Research, 2019, 37, 2491-2498.	1.2	27
27	Modeling trauma in rats: similarities to humans and potential pitfalls to consider. Journal of Translational Medicine, 2019, 17, 305.	1.8	51
28	Midkine Is Elevated After Multiple Trauma and Acts Directly on Human Cardiomyocytes by Altering Their Functionality and Metabolism. Frontiers in Immunology, 2019, 10, 1920.	2.2	12
29	Chronic psychosocial stress compromises the immune response and endochondral ossification during bone fracture healing via l²-AR signaling. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8615-8622.	3.3	50
30	Reduced Terminal Complement Complex Formation in Mice Manifests in Low Bone Mass and Impaired Fracture Healing. American Journal of Pathology, 2019, 189, 147-161.	1.9	9
31	The role of mast cells in ovariectomy-induced delayed bone repair. Osteologie, 2019, 28, .	0.1	1
32	Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. Journal of Neurotrauma, 2018, 35, 2317-2329.	1.7	47
33	Pharmacological inhibition of IL-6 trans-signaling improves compromised fracture healing after severe trauma. Naunyn-Schmiedeberg's Archives of Pharmacology, 2018, 391, 523-536.	1.4	41
34	Estrogen receptor α- (ERα), but not ERβ-signaling, is crucially involved in mechanostimulation of bone fracture healing by whole-body vibration. Bone, 2018, 110, 11-20.	1.4	26
35	Loss of p53 compensates osteopenia in murine Mysml deficiency. FASEB Journal, 2018, 32, 1957-1968.	0.2	18
36	Distinct Effects of IL-6 Classic and Trans -Signaling in Bone Fracture Healing. American Journal of Pathology, 2018, 188, 474-490.	1.9	81

#	Article	IF	CITATIONS
37	The Role of the Intestinal Microbiome in Chronic Psychosocial Stress-Induced Pathologies in Male Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 252.	1.0	29
38	C5aR1 interacts with <scp>TLR</scp> 2 in osteoblasts and stimulates the osteoclastâ€inducing chemokine <scp>CXCL</scp> 10. Journal of Cellular and Molecular Medicine, 2018, 22, 6002-6014.	1.6	28
39	Calcium and vitamin D in bone fracture healing and post-traumatic bone turnover. , 2018, 35, 365-385.		80
40	Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 86, 314-324.	1.5	24
41	Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal remodeling. Biochemical and Biophysical Research Communications, 2018, 503, 2678-2684.	1.0	22
42	Influence of Menopause on Inflammatory Cytokines during Murine and Human Bone Fracture Healing. International Journal of Molecular Sciences, 2018, 19, 2070.	1.8	37
43	Chronic psychosocial stress disturbs long-bone growth in adolescent mice. DMM Disease Models and Mechanisms, 2017, 10, 1399-1409.	1.2	22
44	Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. Scientific Reports, 2017, 7, 7223.	1.6	40
45	In Vivo Evaluation of Fracture Callus Development During Bone Healing in Mice Using an MRI-compatible Osteosynthesis Device for the Mouse Femur. Journal of Visualized Experiments, 2017, , .	0.2	4
46	The inflammatory phase of fracture healing is influenced by oestrogen status in mice. European Journal of Medical Research, 2017, 22, 23.	0.9	39
47	Evaluation of high-resolution In Vivo MRI for longitudinal analysis of endochondral fracture healing in mice. PLoS ONE, 2017, 12, e0174283.	1.1	14
48	Inhibition of Midkine Augments Osteoporotic Fracture Healing. PLoS ONE, 2016, 11, e0159278.	1.1	21
49	Mouse Models in Bone FractureÂHealing Research. Current Molecular Biology Reports, 2016, 2, 101-111.	0.8	48
50	Hypochlorhydriaâ€induced calcium malabsorption does not affect fracture healing but increases postâ€ŧraumatic bone loss in the intact skeleton. Journal of Orthopaedic Research, 2016, 34, 1914-1921.	1.2	14
51	Antagonizing midkine accelerates fracture healing in mice by enhanced bone formation in the fracture callus. British Journal of Pharmacology, 2016, 173, 2237-2249.	2.7	25
52	Mechanobiology of bone remodeling and fracture healing in the aged organism. Innovative Surgical Sciences, 2016, 1, 57-63.	0.4	18
53	The impact of low-magnitude high-frequency vibration on fracture healing is profoundly influenced by the oestrogen status in mice. DMM Disease Models and Mechanisms, 2015, 8, 93-104.	1.2	57
54	Midkine-Deficiency Delays Chondrogenesis during the Early Phase of Fracture Healing in Mice. PLoS ONE, 2014, 9, e116282.	1.1	29

#	Article	IF	CITATIONS
55	Systemic treatment with the sphingosineâ€1â€phosphate analog FTY720 does not improve fracture healing in mice. Journal of Orthopaedic Research, 2013, 31, 1845-1850.	1.2	30
56	The Wnt Serpentine Receptor Frizzled-9 Regulates New Bone Formation in Fracture Healing. PLoS ONE, 2013, 8, e84232.	1.1	52