Eric Tohver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3991600/publications.pdf

Version: 2024-02-01

81 papers

4,423 citations

35 h-index 65 g-index

82 all docs 82 docs citations

times ranked

82

3420 citing authors

#	Article	lF	Citations
1	Astronomically forced cycles in Middle Permian fluvial sediments from Karoo Basin (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 596, 110973.	2.3	5
2	Constraining the Cambrian drift of Gondwana with new paleomagnetic data from post-collisional plutons of the AraçuaÃ-orogen, SE Brazil. Precambrian Research, 2021, 359, 106212.	2.7	5
3	New high-quality paleomagnetic data from the Borborema Province (NE Brazil): Refinement of the APW path of Gondwana in the Early Cambrian. Precambrian Research, 2021, 360, 106243.	2.7	5
4	Cryptic excess argon in metamorphic biotite: Anomalously old 40Ar/39Ar plateau dates tested with Rb/Sr thermochronology and Ar diffusion modelling. Geochimica Et Cosmochimica Acta, 2021, 315, 1-23.	3.9	8
5	High-Resolution Late Devonian Magnetostratigraphy From the Canning Basin, Western Australia: A Re-Evaluation. Frontiers in Earth Science, 2021, 9, .	1.8	3
6	Southward Drift of Eastern Australian Hotspots in the Paleomagnetic Reference Frame Is Consistent With Global True Polar Wander Estimates. Frontiers in Earth Science, 2020, 8, .	1.8	5
7	Zircon U-Pb geochronology and Nd-Pb isotope geochemistry of Blue Ridge basement in the eastern Great Smoky Mountains, U.S.A.: Implications for the Proterozoic tectonic evolution of the southeastern Laurentian margin. Numerische Mathematik, 2020, 320, 677-729.	1.4	8
8	Magnetic Fabric and Geochronology of a Cambrian "lsotropic―Pluton in the Neoproterozoic AraçuaÃ- Orogen. Tectonics, 2020, 39, e2019TC005877.	2.8	11
9	Primordial and recycled helium isotope signatures in the mantle transition zone. Science, 2019, 365, 692-694.	12.6	21
10	Paleomagnetism of Oligocene Hot Spot Volcanics in Central Queensland, Australia. Journal of Geophysical Research: Solid Earth, 2019, 124, 6280-6296.	3.4	11
11	Detrital zircon provenance of Permo-Carboniferous glacial diamictites across Gondwana. Earth-Science Reviews, 2019, 192, 285-316.	9.1	50
12	Trace elements in titanite: A potential tool to constrain polygenetic growth processes and timing. Chemical Geology, 2019, 509, 1-19.	3.3	43
13	Calibrando la transici \tilde{A}^3 n ediac \tilde{A}_i rico-c \tilde{A}_i mbrica en Gondwana suddoccidental. Estudios Geologicos, 2019, 75, 118.	0.2	O
14	End-Permian impactogenic earthquake and tsunami deposits in the intracratonic Paran \tilde{A}_i Basin of Brazil. Bulletin of the Geological Society of America, 2018, 130, 1099-1120.	3.3	26
15	Primary hydrous minerals from the Karoo LIP magmas: Evidence for a hydrated source component. Earth and Planetary Science Letters, 2018, 503, 181-193.	4.4	10
16	Palaeomagnetism of mid-Miocene leucitite volcanics in eastern Australia. Geophysical Journal International, 2018, 215, 303-313.	2.4	6
17	Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana: Testing Pangea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics, 2017, 699, 178-198.	2.2	42
18	Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages. Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	44

#	Article	IF	CITATIONS
19	Jurassic cooling ages in Paleozoic to early Mesozoic granitoids of northeastern Patagonia: 40Ar/39Ar, 40K–40Ar mica and U–Pb zircon evidence. International Journal of Earth Sciences, 2017, 106, 2343-2357.	1.8	16
20	A pressure-temperature phase diagram for zircon at extreme conditions. Earth-Science Reviews, 2017, 165, 185-202.	9.1	128
21	Corrigendum to "Late Devonian carbonate magnetostratigraphy from the Oscar and Horse Spring Ranges, Lennard Shelf, Canning Basin, Western Australia―[Earth Planet. Sci. Lett. 409 (2015) 232–242]. Earth and Planetary Science Letters, 2017, 478, 46.	4.4	0
22	Refining the chronostratigraphy of the Karoo Basin, South Africa: magnetostratigraphic constraints support an early Permian age for the Ecca Group. Geophysical Journal International, 2017, 211, 1354-1374.	2.4	19
23	The two Suvasvesi impact structures, Finland: Argon isotopic evidence for a "false―impact crater doublet. Meteoritics and Planetary Science, 2016, 51, 966-980.	1.6	9
24	The timing of the Cape Orogeny: New 40 Ar/ 39 Ar age constraints on deformation and cooling of the Cape Fold Belt, South Africa. Gondwana Research, 2016, 32, 122-137.	6.0	52
25	An Elevated Perspective: Dykeâ€Related Fracture Networks Analysed with Uav Photogrammetry. Acta Geologica Sinica, 2016, 90, 54-55.	1.4	6
26	Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia. Precambrian Research, 2015, 265, 232-248.	2.7	56
27	Magnetostratigraphic constraints on the age of the lower B eaufort G roup, western K aroo basin, S outh A frica, and a critical analysis of existing U â€∙P b geochronological data. Geochemistry, Geophysics, Geosystems, 2015, 16, 3649-3665.	2.5	12
28	New 40Ar/39Ar dating of the Clearwater Lake impact structures (Québec, Canada) – Not the binary asteroid impact it seems?. Geochimica Et Cosmochimica Acta, 2015, 148, 304-324.	3.9	29
29	Late Devonian carbonate magnetostratigraphy from the Oscar and Horse Spring Ranges, Lennard Shelf, Canning Basin, Western Australia. Earth and Planetary Science Letters, 2015, 409, 232-242.	4.4	20
30	Zircons from the Acraman impact melt rock (South Australia): Shock metamorphism, U–Pb and 40 Ar/39 Ar systematics, and implications for the isotopic dating of impact events. Geochimica Et Cosmochimica Acta, 2015, 161, 71-100.	3.9	48
31	Meteorite traces on a shatter cone surface from the Agoudal impact site, Morocco. Geological Magazine, 2015, 152, 751-757.	1.5	9
32	Upper Kellwasser carbon isotope excursion pre-dates the F–F boundary in the Upper Devonian Lennard Shelf carbonate system, Canning Basin, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 438, 180-190.	2.3	23
33	The late Neoproterozoic Sierra de las Ãnimas Magmatic Complex and Playa Hermosa Formation, southern Uruguay, revisited: Paleogeographic implications of new paleomagnetic and precise geochronologic data. Precambrian Research, 2015, 259, 143-155.	2.7	39
34	Age and paleomagnetism of the 1210Ma Gnowangerup–Fraser dyke swarm, Western Australia, and implications for late Mesoproterozoic paleogeography. Precambrian Research, 2014, 246, 1-15.	2.7	50
35	Liquefaction of sedimentary rocks during impact crater development. Earth and Planetary Science Letters, 2014, 408, 285-295.	4.4	9
36	Palaeomagnetism of the Permo-Triassic Araguainha impact structure (Central Brazil) and implications for Pangean reconstructions. Geophysical Journal International, 2014, 198, 154-163.	2.4	10

#	Article	IF	CITATIONS
37	40Ar/39Ar age of the Lake Saint Martin impact structure (Canada) – Unchaining the Late Triassic terrestrial impact craters. Earth and Planetary Science Letters, 2014, 406, 37-48.	4.4	30
38	Architectural Styles and Sedimentology of the Fluvial Lower Beaufort Group, Karoo Basin, South Africa. Journal of Sedimentary Research, 2014, 84, 326-348.	1.6	51
39	Episodic Triassic magmatism in the western South Qinling Orogen, central China, and its implications. Geological Journal, 2014, 49, 402-423.	1.3	33
40	Comment on "Was there an Ediacaran Clymene Ocean in central South America?" By U. G. Cordani and others. Numerische Mathematik, 2014, 314, 805-813.	1.4	22
41	Shaking a methane fizz: Seismicity from the Araguainha impact event and the Permian–Triassic global carbon isotope record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387, 66-75.	2.3	28
42	Geological and thermochronological studies of the Dashui gold deposit, West Qinling Orogen, Central China. Mineralium Deposita, 2013, 48, 397-412.	4.1	32
43	The South American ancestry of the North Patagonian Massif: geochronological evidence for an autochthonous origin?. Terra Nova, 2013, 25, 337-342.	2.1	50
44	Upper Permian magnetic stratigraphy of the lower Beaufort Group, Karoo Basin. Earth and Planetary Science Letters, 2013, 375, 123-134.	4.4	86
45	Late Permian-Triassic magmatic evolution in the Jinshajiang orogenic belt, SW China and implications for orogenic processes following closure of the Paleo-Tethys. Numerische Mathematik, 2013, 313, 81-112.	1.4	112
46	The Mesoproterozoic Guaporé suture in the SW Amazonian Craton: Geotectonic implications based on field geology, zircon geochronology and Nd–Sr isotope geochemistry. Journal of South American Earth Sciences, 2013, 48, 271-295.	1.4	32
47	Episodic Remagnetizations related to tectonic events and their consequences for the South America Polar Wander Path. Geological Society Special Publication, 2012, 371, 55-87.	1.3	20
48	Magnetic fabric of Araguainha complex impact structure (Central Brazil): Implications for deformation mechanisms and central uplift formation. Earth and Planetary Science Letters, 2012, 331-332, 347-359.	4.4	13
49	Geochronological constraints on the age of a Permo–Triassic impact event: U–Pb and 40Ar/39Ar results for the 40km Araguainha structure of central Brazil. Geochimica Et Cosmochimica Acta, 2012, 86, 214-227.	3.9	74
50	Contrasting rift and subductionâ€related plagiogranites in the Jinshajiang ophiolitic mélange, southwest China, and implications for the Paleoâ€Tethys. Tectonics, 2012, 31, .	2.8	102
51	Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 2012, 114, 325-368.	9.1	1,088
52	The 1420Ma IndiavaÃ-Mafic Intrusion (SW Amazonian Craton): Paleomagnetic results and implications for the Columbia supercontinent. Gondwana Research, 2012, 22, 956-973.	6.0	52
53	Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata craton, Argentina. Gondwana Research, 2012, 21, 394-405.	6.0	95
54	Ages (U–Pb SHRIMP and LA ICPMS) and stratigraphic evolution of the Neoproterozoic volcano-sedimentary successions from the extensional Camaquã Basin, Southern Brazil. Gondwana Research, 2012, 21, 466-482.	6.0	50

#	Article	IF	Citations
55	Assembling two easy pieces: the geology of western Gondwana and plate tectonic theory - An introduction to the special volume. Gondwana Research, 2012, 21, 311-315.	6.0	8
56	Generation of Early Indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW) Tj ETQq0	0 0 rgBT /0	Overlock 10 Tf
57	Triassic collision in the Paleo-Tethys Ocean constrained by volcanic activity in SW China. Lithos, 2012, 144-145, 145-160.	1.4	145
58	New Late Permian paleomagnetic data from Argentina: Refinement of the apparent polar wander path of Gondwana. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	42
59	Structural evolution and U–Pb SHRIMP zircon ages of the Neoproterozoic Maria da Fé shear zone, central Ribeira Belt – SE Brazil. Journal of South American Earth Sciences, 2011, 31, 199-213.	1.4	22
60	Paleomagnetism and 40Ar/39Ar geochronology of the high-grade metamorphic rocks of the Jequi \tilde{A} © block, SA£o Francisco Craton: Atlantica, Ur and beyond. Precambrian Research, 2011, 185, 183-201.	2.7	31
61	Support for an "A-type―Pangea reconstruction from high-fidelity Late Permian and Early to Middle Triassic paleomagnetic data from Argentina. Journal of Geophysical Research, 2011, 116, .	3.3	35
62	Quantifying rates of dome-and-keel formation in the Barberton granitoid-greenstone belt, South Africa. Precambrian Research, 2010, 177, 199-211.	2.7	42
63	Closing the Clymene ocean and bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana, southeast Amazon craton. Geology, 2010, 38, 267-270.	4.4	99
64	Neoproterozoic glacial dynamics revealed by provenance of diamictites of the Bebedouro Formation, São Francisco Craton, Central Eastern Brazil. Terra Nova, 2009, 21, 375-385.	2.1	28
65	A palaeomagnetic and sup 40 /sup Ar sup 39 /sup Ar study of late precambrian sills in the SW part of the Amazonian craton: Amazonia in the Rodinia reconstruction. Geophysical Journal International, 2009, 178, 106-122.	2.4	33
66	The continental record of Ediacaran volcanoâ€sedimentary successions in southern Brazil and their global implications. Terra Nova, 2008, 20, 259-266.	2.1	50
67	Direct dating of paleomagnetic results from Precambrian sediments in the Amazon craton: Evidence for Grenvillian emplacement of exotic crust in SE Appalachians of North America. Earth and Planetary Science Letters, 2008, 267, 188-199.	4.4	58
68	Direct dating of carbonate remagnetization by 40Ar/39Ar analysis of the smectite–illite transformation. Earth and Planetary Science Letters, 2008, 274, 524-530.	4.4	48
69	Structural evolution of the 40 km wide Araguainha impact structure, central Brazil. Meteoritics and Planetary Science, 2008, 43, 701-716.	1.6	30
70	Insights into the morphology, geometry, and post-impact erosion of the Araguainha peak-ring structure, central Brazil. Bulletin of the Geological Society of America, 2007, 119, 1135-1150.	3.3	30
71	Late Paleoproterozoic (geon 18 and 17) reactivation of the Neoarchean Great Lakes Tectonic Zone, northern Michigan, USA: Evidence from kinematic analysis, thermobarometry and 40Ar/39Ar geochronology. Precambrian Research, 2007, 157, 144-168.	2.7	15
72	LTD-Thellier paleointensity of 1.2 Ga Nova Floresta mafic rocks (Amazon craton). Geophysical Research Letters, 2007, 34, .	4.0	7

ERIC TOHVER

#	Article	IF	CITATION
73	Paleomagnetic record of Africa and South America for the 1200–500Ma interval, and evaluation of Rodinia and Gondwana assemblies. Precambrian Research, 2006, 147, 193-222.	2.7	195
74	Restored transect across the exhumed Grenville orogen of Laurentia and Amazonia, with implications for crustal architecture. Geology, 2006, 34, 669.	4.4	97
75	Late Mesoproterozoic Deformation of SW Amazonia (Rond $ ilde{A}$ ´nia, Brazil): Geochronological and Structural Evidence for Collision with Southern Laurentia. Journal of Geology, 2005, 113, 309-323.	1.4	48
76	Two stage tectonic history of the SW Amazon craton in the late Mesoproterozoic: identifying a cryptic suture zone. Precambrian Research, 2005, 137, 35-59.	2.7	47
77	Significance of the Nova Brasil \tilde{A}^{\ddagger} ndia metasedimentary belt in western Brazil: Redefining the Mesoproterozoic boundary of the Amazon craton. Tectonics, 2004, 23, n/a-n/a.	2.8	57
78	Terrane transfer during the Grenville orogeny: tracing the Amazonian ancestry of southern Appalachian basement through Pb and Nd isotopes. Earth and Planetary Science Letters, 2004, 228, 161-176.	4.4	112
79	Paleogeography of the Amazon craton at 1.2 Ga: early Grenvillian collision with the Llano segment of Laurentia. Earth and Planetary Science Letters, 2002, 199, 185-200.	4.4	165
80	Interaction of flexural shear, S–C fabrics, and oblique shear during folding of micaceous quartzite. Journal of Structural Geology, 2002, 24, 1087-1099.	2.3	6
81	On the development of zones of reverse shearing in mylonitic rocks. Journal of Structural Geology, 1999, 21, 1603-1614.	2.3	34