Peng Shi

List of Publications by Citations

Source: https://exaly.com/author-pdf/3991571/peng-shi-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

53 papers 1,922 21 43 g-index

54 2,493 8.4 5.1 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
53	Metagenomic insights into chlorination effects on microbial antibiotic resistance in drinking water. Water Research, 2013 , 47, 111-20	12.5	312
52	Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination. <i>Environmental Science & Environmental Science & </i>	10.3	271
51	Influence of land use and land cover patterns on seasonal water quality at multi-spatial scales. <i>Catena</i> , 2017 , 151, 182-190	5.8	192
50	Metagenomic insights into Cr(VI) effect on microbial communities and functional genes of an expanded granular sludge bed reactor treating high-nitrate wastewater. <i>Water Research</i> , 2015 , 76, 43-	·52 ^{12.5}	141
49	Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant. <i>PLoS ONE</i> , 2013 , 8, e76079	3.7	77
48	Metagenomic insights into ultraviolet disinfection effects on antibiotic resistome in biologically treated wastewater. <i>Water Research</i> , 2016 , 101, 309-317	12.5	69
47	High-nitrate wastewater treatment in an expanded granular sludge bed reactor and microbial diversity using 454 pyrosequencing analysis. <i>Bioresource Technology</i> , 2013 , 134, 190-7	11	67
46	Detection, formation and occurrence of 13 new polar phenolic chlorinated and brominated disinfection byproducts in drinking water. <i>Water Research</i> , 2017 , 112, 129-136	12.5	65
45	Quantification of nitrate sources and fates in rivers in an irrigated agricultural area using environmental isotopes and a Bayesian isotope mixing model. <i>Chemosphere</i> , 2018 , 208, 493-501	8.4	62
44	Seasonal changes in water quality and its main influencing factors in the Dan River basin. <i>Catena</i> , 2019 , 173, 131-140	5.8	52
43	A comprehensive insight into bacterial virulence in drinking water using 454 pyrosequencing and Illumina high-throughput sequencing. <i>Ecotoxicology and Environmental Safety</i> , 2014 , 109, 15-21	7	50
42	Antibiotic Resistome Alteration by Different Disinfection Strategies in a Full-Scale Drinking Water Treatment Plant Deciphered by Metagenomic Assembly. <i>Environmental Science & Environmental Science</i>	10.3	41
41	The deep challenge of nitrate pollution in river water of China. <i>Science of the Total Environment</i> , 2021 , 770, 144674	10.2	40
40	Metagenomic profiling of antibiotic resistance genes and their associations with bacterial community during multiple disinfection regimes in a full-scale drinking water treatment plant. Water Research, 2020, 176, 115721	12.5	39
39	Occurrence, abundance and elimination of class 1 integrons in one municipal sewage treatment plant. <i>Ecotoxicology</i> , 2011 , 20, 968-73	2.9	38
38	Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. <i>Sustainable Cities and Society</i> , 2019 , 50, 101658	10.1	34
37	A New Group of Disinfection Byproducts in Drinking Water: Trihalo-hydroxy-cyclopentene-diones. <i>Environmental Science & Environmental </i>	10.3	34

(2020-2018)

36	Toxicological and chemical insights into representative source and drinking water in eastern China. <i>Environmental Pollution</i> , 2018 , 233, 35-44	9.3	32
35	Assessment of phenol effect on microbial community structure and function in an anaerobic denitrifying process treating high concentration nitrate wastewater. <i>Chemical Engineering Journal</i> , 2017 , 330, 757-763	14.7	31
34	Has Grain for Green I threaten food security on the Loess Plateau of China?. <i>Ecosystem Health and Sustainability</i> , 2020 , 6, 1709560	3.7	25
33	Environmental fate of tetracycline resistance genes originating from swine feedlots in river water. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2014 , 49, 624-31	2.2	25
32	Fate of organic micropollutants and their biological effects in a drinking water source treated by a field-scale constructed wetland. <i>Science of the Total Environment</i> , 2019 , 682, 756-764	10.2	18
31	Occurrence and potential human health risks of semi-volatile organic compounds in drinking water from cities along the Chinese coastland of the Yellow Sea. <i>Chemosphere</i> , 2018 , 206, 655-662	8.4	17
30	Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment. <i>Journal of Environmental Sciences</i> , 2014 , 26, 717-25	6.4	16
29	Anion-exchange resin adsorption followed by electrolysis: A new disinfection approach to control halogenated disinfection byproducts in drinking water. <i>Water Research</i> , 2020 , 168, 115144	12.5	16
28	454 pyrosequencing analysis on microbial diversity of an expanded granular sludge bed reactor treating high NaCl and nitrate concentration wastewater. <i>Biotechnology and Bioprocess Engineering</i> , 2014 , 19, 183-190	3.1	15
27	Antimicrobial resins with quaternary ammonium salts as a supplement to combat the antibiotic resistome in drinking water treatment plants. <i>Chemosphere</i> , 2019 , 221, 132-140	8.4	14
26	A comparative study of bacterial and fungal-bacterial steady-state stages of a biofilter in gaseous toluene removal: performance and microbial community. <i>Journal of Chemical Technology and Biotechnology</i> , 2017 , 92, 2853-2861	3.5	10
25	1,4-Dioxane exposure induces kidney damage in mice by perturbing specific renal metabolic pathways: An integrated omics insight into the underlying mechanisms. <i>Chemosphere</i> , 2019 , 228, 149-15	5 8 ·4	9
24	Suspect screening and risk assessment of pollutants in the wastewater from a chemical industry park in China. <i>Environmental Pollution</i> , 2020 , 263, 114493	9.3	9
23	Chemical and bioanalytical assessments on drinking water treatments by quaternized magnetic microspheres. <i>Journal of Hazardous Materials</i> , 2015 , 285, 53-60	12.8	8
22	Microbial Community in a Biofilter for Removal of Low Load Nitrobenzene Waste Gas. <i>PLoS ONE</i> , 2017 , 12, e0170417	3.7	8
21	Detection, transformation, and toxicity of indole-derivative nonsteroidal anti-inflammatory drugs during chlorine disinfection. <i>Chemosphere</i> , 2020 , 260, 127579	8.4	8
20	Environmental decontamination using photocatalytic fuel cells and photoelectrocatalysis-microbial fuel cells. <i>Journal of Chemical Technology and Biotechnology</i> , 2018 , 93, 3336-3346	3.5	7
19	Oral Exposure to 1,4-Dioxane Induces Hepatic Inflammation in Mice: The Potential Promoting Effect of the Gut Microbiome. <i>Environmental Science & Environmental Science & Envi</i>	10.3	7

18	Detection, identification and control of polar iodinated disinfection byproducts in chlor(am)inated secondary wastewater effluents. <i>Environmental Science: Water Research and Technology</i> , 2019 , 5, 397-4	0 4 .2	6
17	Performance of a novel magnetic solid-phase-extraction microsphere and its application in the detection of organic micropollutants in the Huai River, China. <i>Environmental Pollution</i> , 2019 , 252, 196-2	0 ^{4·3}	6
16	Trade-offs Among Ecosystem Services After Vegetation Restoration in Chinal Loess Plateau. <i>Natural Resources Research</i> , 2021 , 30, 2703-2713	4.9	6
15	Kinetics and efficacy of membrane/DNA damage to Bacillus subtilis and autochthonous bacteria during UV/chlorine treatment under different pH and irradiation wavelengths. <i>Chemical Engineering Journal</i> , 2021 , 422, 129885	14.7	6
14	Development of a magnetic solid-phase extraction coupled with gas chromatography and mass spectrometry method for the analysis of semivolatile organic compounds. <i>Journal of Separation Science</i> , 2015 , 38, 3295-3303	3.4	5
13	Chronic exposure to contaminated drinking water stimulates PPAR expression in mice livers. <i>Chemosphere</i> , 2012 , 88, 407-12	8.4	5
12	The performance of quaternized magnetic microspheres on control of disinfection by-products and toxicity in drinking water. <i>Chemical Engineering Journal</i> , 2014 , 254, 230-236	14.7	4
11	Risk assessments of emerging contaminants in various waters and changes of microbial diversity in sediments from Yangtze River chemical contiguous zone, Eastern China. <i>Science of the Total Environment</i> , 2022 , 803, 149982	10.2	4
10	The impact of land use and socio-economic factors on ammonia nitrogen pollution in Weihe River watershed, China. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 17659-17674	5.1	4
9	Concentrations, Sources, and Potential Human Health Risks of PCDD/Fs, dl-PCBs, and PAHs in Rural Atmosphere Around Chemical Plants in Jiangsu Province, China. <i>Bulletin of Environmental Contamination and Toxicology</i> , 2020 , 104, 846-851	2.7	3
8	A cross-omics toxicological evaluation of drinking water treated with different processes. <i>Journal of Hazardous Materials</i> , 2014 , 271, 57-64	12.8	3
7	Structure-dependent antimicrobial mechanism of quaternary ammonium resins and a novel synthesis of highly efficient antimicrobial resin. <i>Science of the Total Environment</i> , 2021 , 768, 144450	10.2	3
6	Spatial dynamics of bacterial community in chlorinated drinking water distribution systems supplied with two treatment plants: An integral study of free-living and particle-associated bacteria. <i>Environment International</i> , 2021 , 154, 106552	12.9	3
5	Organic micropollutants and disinfection byproducts removal from drinking water using concurrent anion exchange and chlorination process. <i>Science of the Total Environment</i> , 2021 , 752, 141470	10.2	2
4	Surficial N+ charge density indicating antibacterial capacity of quaternary ammonium resins in water environment. <i>PLoS ONE</i> , 2020 , 15, e0239941	3.7	1
3	Vegetation restoration and agricultural management to mitigate nitrogen pollution in the surface waters of the Dan River, China. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 47136-47148	5.1	1
2	In vivo toxicity evaluations of halophenolic disinfection byproducts in drinking water: A multi-omics analysis of toxic mechanisms <i>Water Research</i> , 2022 , 218, 118431	12.5	1
1	Metagenomic Profiling of Antibiotic Resistance Genes and Mobile Genetic Elements in a Tannery Wastewater Treatment Plant 2015 , 141-161		